Bayesian inference for the Rayleigh distribution using ordered extreme k-records ranked set sampling with random sample sizes

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Haidy A. Newer , Bader S Alanazi
{"title":"Bayesian inference for the Rayleigh distribution using ordered extreme k-records ranked set sampling with random sample sizes","authors":"Haidy A. Newer ,&nbsp;Bader S Alanazi","doi":"10.1016/j.aej.2025.03.081","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an enhanced framework for statistical inference and prediction of the Rayleigh distribution using ordered extreme k-records ranked set sampling with both fixed and random sample sizes. We employ Bayesian methodologies to estimate the unknown parameter and develop predictive estimates under type II censoring, evaluating performance across three loss functions: Al-Bayyati, general entropy, and squared error. The approach extends to interval estimation via Bayesian probability intervals and highest posterior density intervals, as well as predictive frameworks for both point and interval forecasts. To validate our theoretical framework, we conduct extensive Monte Carlo simulations to evaluate the precision of our estimates and the reliability of confidence intervals. The practical applicability of these methodologies is demonstrated through their application to two empirical datasets, providing tangible evidence of their effectiveness in real-data scenarios.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"125 ","pages":"Pages 214-231"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825003916","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an enhanced framework for statistical inference and prediction of the Rayleigh distribution using ordered extreme k-records ranked set sampling with both fixed and random sample sizes. We employ Bayesian methodologies to estimate the unknown parameter and develop predictive estimates under type II censoring, evaluating performance across three loss functions: Al-Bayyati, general entropy, and squared error. The approach extends to interval estimation via Bayesian probability intervals and highest posterior density intervals, as well as predictive frameworks for both point and interval forecasts. To validate our theoretical framework, we conduct extensive Monte Carlo simulations to evaluate the precision of our estimates and the reliability of confidence intervals. The practical applicability of these methodologies is demonstrated through their application to two empirical datasets, providing tangible evidence of their effectiveness in real-data scenarios.
使用随机样本量的有序极值k记录排序集抽样的瑞利分布的贝叶斯推理
本研究提出了一个增强的框架,用于统计推断和Rayleigh分布的预测,使用固定和随机样本量的有序极端k记录排序集抽样。我们使用贝叶斯方法来估计未知参数,并在II型审查下开发预测估计,评估三个损失函数的性能:Al-Bayyati,一般熵和平方误差。该方法通过贝叶斯概率区间和最高后验密度区间扩展到区间估计,以及点和区间预测的预测框架。为了验证我们的理论框架,我们进行了广泛的蒙特卡罗模拟,以评估我们估计的精度和置信区间的可靠性。通过对两个经验数据集的应用,证明了这些方法的实际适用性,为其在真实数据场景中的有效性提供了切实的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信