Jihong Jiang , Han Wang , Junlin Lin , Zhiyong Liu , Laibo Li , Yali Li , Zongjin Li , Lingchao Lu , Yunjian Li , Zeyu Lu
{"title":"Accelerating mechanism of cement hydration by hydroxyl free radicals: new perspectives from photoexcited nano-TiO2","authors":"Jihong Jiang , Han Wang , Junlin Lin , Zhiyong Liu , Laibo Li , Yali Li , Zongjin Li , Lingchao Lu , Yunjian Li , Zeyu Lu","doi":"10.1016/j.compositesb.2025.112524","DOIUrl":null,"url":null,"abstract":"<div><div>Previous studies primarily considered TiO<sub>2</sub> as a nano-filler to accelerate cement hydration due to the nucleation site effect. However, hydroxyl free radicals (•OH), released from TiO<sub>2</sub> under UV irradiation, also exhibit great potential to accelerate cement hydration owing to their high nucleophilicity arising from unpaired electrons. This study is the first to reveal the accelerating mechanism of •OH generated by photoexcited nano-TiO<sub>2</sub> on cement hydration. Current experimental results indicated that 5.0 wt% addition of photoexcited nano-TiO<sub>2</sub> (under 6 h of UV irradiation during the early curing stage) improved the dissolution rate of tricalcium silicate (C<sub>3</sub>S) by 30 %, followed by a 35 % increase in the hydration degree of cement paste. More importantly, the polymerization degree and high-density content of C–S–H gels were also improved by 26 % and 13 %, accompanied by a 46 % reduction in porosity of the composites. All the aforementioned improvements were attributed to the presence of •OH generated by photoexcited nano-TiO<sub>2</sub>, which significantly accelerated cement hydration by accelerating C<sub>3</sub>S dissolution, facilitating faster nucleation and growth of C–S–H gels. In addition, the Density Functional Theory (DFT) calculations revealed that the accelerating effect of •OH on cement hydration may stem from the stronger interaction between •OH and the Ca ion on the C<sub>3</sub>S surface compared to the water molecule, and the increased surface nucleophilicity due to the dispersion of unpaired elections from •OH to all the O ions in the surface layer. These findings provide a high-efficiency approach to accelerate cement hydration by photoexcited nano-TiO<sub>2</sub>, thereby paving the way for the development of advanced and sustainable cement-based materials.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"301 ","pages":"Article 112524"},"PeriodicalIF":12.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825004251","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies primarily considered TiO2 as a nano-filler to accelerate cement hydration due to the nucleation site effect. However, hydroxyl free radicals (•OH), released from TiO2 under UV irradiation, also exhibit great potential to accelerate cement hydration owing to their high nucleophilicity arising from unpaired electrons. This study is the first to reveal the accelerating mechanism of •OH generated by photoexcited nano-TiO2 on cement hydration. Current experimental results indicated that 5.0 wt% addition of photoexcited nano-TiO2 (under 6 h of UV irradiation during the early curing stage) improved the dissolution rate of tricalcium silicate (C3S) by 30 %, followed by a 35 % increase in the hydration degree of cement paste. More importantly, the polymerization degree and high-density content of C–S–H gels were also improved by 26 % and 13 %, accompanied by a 46 % reduction in porosity of the composites. All the aforementioned improvements were attributed to the presence of •OH generated by photoexcited nano-TiO2, which significantly accelerated cement hydration by accelerating C3S dissolution, facilitating faster nucleation and growth of C–S–H gels. In addition, the Density Functional Theory (DFT) calculations revealed that the accelerating effect of •OH on cement hydration may stem from the stronger interaction between •OH and the Ca ion on the C3S surface compared to the water molecule, and the increased surface nucleophilicity due to the dispersion of unpaired elections from •OH to all the O ions in the surface layer. These findings provide a high-efficiency approach to accelerate cement hydration by photoexcited nano-TiO2, thereby paving the way for the development of advanced and sustainable cement-based materials.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.