Yuan Li , Shijiang Zhong , Mingfang Qian , Xuexi Zhang , Zhenggang Jia , Lin Geng
{"title":"Design and fabrication of bionic Bouligand-structured SiC/2024Al composites via binder jetting additive manufacturing and pressure infiltration","authors":"Yuan Li , Shijiang Zhong , Mingfang Qian , Xuexi Zhang , Zhenggang Jia , Lin Geng","doi":"10.1016/j.compositesb.2025.112526","DOIUrl":null,"url":null,"abstract":"<div><div>Metal matrix composites (MMCs) are widely used in high-end manufacturing. However, the tradeoff between the strength and toughness of these materials poses a problem. In this study, inspired by nature, bionic Bouligand-structured SiC/2024Al composites with a pitch angle in the range of 15°–45° were designed using SolidWorks software and prepared via binder jetting additive manufacturing and pressure infiltration. Their SiC content was about 11.6 vol%, and their porosity ranged from 1.59 % to 2.80 %. A periodic structure was confirmed from microstructural observations and a micro-computed tomography examination. Furthermore, a pitch-angle-related mechanical property was observed in the composites. In particular, finite element analysis showed that the 45°-pitch-angle composite had lower stress concentration and higher load carrying capacity than the composites with other pitch angles. After solution and aging treatment, nano-scale θ′ and S′ phases precipitated in the matrix, resulting in Orowan strengthening behavior. Consequently, the heat-treated 45°-pitch-angle composite showed a higher compressive strength of 741.59 MPa, a compressive strain exceeding 30 % and a <em>K</em><sub>IC</sub> value of 13.32 MPa m<sup>1/2</sup>. The results of this study are expected to contribute to development of methods to overcome the strength-toughness tradeoff problem in MMCs.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"301 ","pages":"Article 112526"},"PeriodicalIF":12.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825004275","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal matrix composites (MMCs) are widely used in high-end manufacturing. However, the tradeoff between the strength and toughness of these materials poses a problem. In this study, inspired by nature, bionic Bouligand-structured SiC/2024Al composites with a pitch angle in the range of 15°–45° were designed using SolidWorks software and prepared via binder jetting additive manufacturing and pressure infiltration. Their SiC content was about 11.6 vol%, and their porosity ranged from 1.59 % to 2.80 %. A periodic structure was confirmed from microstructural observations and a micro-computed tomography examination. Furthermore, a pitch-angle-related mechanical property was observed in the composites. In particular, finite element analysis showed that the 45°-pitch-angle composite had lower stress concentration and higher load carrying capacity than the composites with other pitch angles. After solution and aging treatment, nano-scale θ′ and S′ phases precipitated in the matrix, resulting in Orowan strengthening behavior. Consequently, the heat-treated 45°-pitch-angle composite showed a higher compressive strength of 741.59 MPa, a compressive strain exceeding 30 % and a KIC value of 13.32 MPa m1/2. The results of this study are expected to contribute to development of methods to overcome the strength-toughness tradeoff problem in MMCs.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.