{"title":"More results on the spectral radius of graphs with no odd wheels","authors":"Wenqian Zhang","doi":"10.1016/j.disc.2025.114550","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <em>G</em>, the spectral radius <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> is the largest eigenvalue of its adjacency matrix. An odd wheel <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> with <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> is a graph obtained from a cycle of order 2<em>k</em> by adding a new vertex connecting to all the vertices of the cycle. Let <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> be the set of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graphs of order <em>n</em> with the maximum spectral radius. Very recently, Cioabă, Desai and Tait <span><span>[4]</span></span> characterized the graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> for sufficiently large <em>n</em>, where <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>≠</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span>. And they left the case <span><math><mi>k</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span> as a problem. In this paper, we settle this problem. Moreover, we completely characterize the graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> when <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span> is even and <span><math><mi>n</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mtext>mod</mtext><mspace></mspace></mrow><mn>4</mn><mo>)</mo></math></span> is sufficiently large. Consequently, the graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> are characterized completely for any <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and sufficiently large <em>n</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114550"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2500158X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a graph G, the spectral radius of G is the largest eigenvalue of its adjacency matrix. An odd wheel with is a graph obtained from a cycle of order 2k by adding a new vertex connecting to all the vertices of the cycle. Let be the set of -free graphs of order n with the maximum spectral radius. Very recently, Cioabă, Desai and Tait [4] characterized the graphs in for sufficiently large n, where and . And they left the case as a problem. In this paper, we settle this problem. Moreover, we completely characterize the graphs in when is even and is sufficiently large. Consequently, the graphs in are characterized completely for any and sufficiently large n.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.