{"title":"Global gradient estimates for solutions of parabolic equations with nonstandard growth","authors":"Rakesh Arora , Sergey Shmarev","doi":"10.1016/j.jmaa.2025.129582","DOIUrl":null,"url":null,"abstract":"<div><div>We study how the smoothness of the initial datum and the free term affect the global regularity properties of solutions to the Dirichlet problem for the class of parabolic equations of <span><math><mi>p</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Laplace type<span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></mrow></msub><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>+</mo><mi>F</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>z</mi><mo>=</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>=</mo><mi>Ω</mi><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo><mo>,</mo></math></span></span></span> with the nonlinear source <span><math><mi>F</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>s</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>−</mo><mn>2</mn></mrow></msup><mo>(</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>,</mo><mi>∇</mi><mi>u</mi><mo>)</mo></math></span>. It is proven the existence of a solution such that if <span><math><mo>|</mo><mi>∇</mi><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>|</mo><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> for some <span><math><mi>r</mi><mo>≥</mo><mi>max</mi><mo></mo><mo>{</mo><mn>2</mn><mo>,</mo><mi>max</mi><mo></mo><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>}</mo></math></span>, then the gradient preserves the initial order of integrability in time, gains global higher integrability, and the solution acquires the second-order regularity in the following sense:<span><span><span><math><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>|</mo><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo><mrow><mtext> for a.e. </mtext><mi>t</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow><mo>,</mo><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>+</mo><mi>ρ</mi><mo>+</mo><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo><mrow><mtext> for any </mtext><mi>ρ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mrow></mrow><mo>,</mo></math></span></span></span> and<span><span><span><math><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>+</mo><mi>r</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>N</mi></mrow></msup><mo>.</mo></math></span></span></span> The exponent <em>r</em> is arbitrary and independent of <span><math><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span> if <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo></math></span>, while for <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo></math></span> with <span><math><mi>σ</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mi>N</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span> the exponent <em>r</em> belongs to a bounded interval whose endpoints are defined by <span><math><mi>max</mi><mo></mo><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <span><math><mi>min</mi><mo></mo><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <em>N</em>, and <em>σ</em>. An integration by parts formula is also proven, which is of independent interest.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129582"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003634","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study how the smoothness of the initial datum and the free term affect the global regularity properties of solutions to the Dirichlet problem for the class of parabolic equations of -Laplace type with the nonlinear source . It is proven the existence of a solution such that if for some , then the gradient preserves the initial order of integrability in time, gains global higher integrability, and the solution acquires the second-order regularity in the following sense: and The exponent r is arbitrary and independent of if , while for with the exponent r belongs to a bounded interval whose endpoints are defined by , , N, and σ. An integration by parts formula is also proven, which is of independent interest.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.