Global gradient estimates for solutions of parabolic equations with nonstandard growth

IF 1.2 3区 数学 Q1 MATHEMATICS
Rakesh Arora , Sergey Shmarev
{"title":"Global gradient estimates for solutions of parabolic equations with nonstandard growth","authors":"Rakesh Arora ,&nbsp;Sergey Shmarev","doi":"10.1016/j.jmaa.2025.129582","DOIUrl":null,"url":null,"abstract":"<div><div>We study how the smoothness of the initial datum and the free term affect the global regularity properties of solutions to the Dirichlet problem for the class of parabolic equations of <span><math><mi>p</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Laplace type<span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></mrow></msub><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>+</mo><mi>F</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>z</mi><mo>=</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>=</mo><mi>Ω</mi><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo><mo>,</mo></math></span></span></span> with the nonlinear source <span><math><mi>F</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>s</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>−</mo><mn>2</mn></mrow></msup><mo>(</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>,</mo><mi>∇</mi><mi>u</mi><mo>)</mo></math></span>. It is proven the existence of a solution such that if <span><math><mo>|</mo><mi>∇</mi><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>|</mo><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> for some <span><math><mi>r</mi><mo>≥</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mn>2</mn><mo>,</mo><mi>max</mi><mo>⁡</mo><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>}</mo></math></span>, then the gradient preserves the initial order of integrability in time, gains global higher integrability, and the solution acquires the second-order regularity in the following sense:<span><span><span><math><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>|</mo><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo><mrow><mtext> for a.e. </mtext><mi>t</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow><mo>,</mo><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>+</mo><mi>ρ</mi><mo>+</mo><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo><mrow><mtext> for any </mtext><mi>ρ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mrow></mrow><mo>,</mo></math></span></span></span> and<span><span><span><math><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>+</mo><mi>r</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>N</mi></mrow></msup><mo>.</mo></math></span></span></span> The exponent <em>r</em> is arbitrary and independent of <span><math><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span> if <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo></math></span>, while for <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo></math></span> with <span><math><mi>σ</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mi>N</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span> the exponent <em>r</em> belongs to a bounded interval whose endpoints are defined by <span><math><mi>max</mi><mo>⁡</mo><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <span><math><mi>min</mi><mo>⁡</mo><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <em>N</em>, and <em>σ</em>. An integration by parts formula is also proven, which is of independent interest.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129582"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003634","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study how the smoothness of the initial datum and the free term affect the global regularity properties of solutions to the Dirichlet problem for the class of parabolic equations of p(x,t)-Laplace typeutΔp()u=f(z)+F(z,u,u),z=(x,t)QT=Ω×(0,T), with the nonlinear source F(z,u,u)=a(z)|u|q(z)2u+|u|s(z)2(c,u). It is proven the existence of a solution such that if |u(x,0)|Lr(Ω) for some rmax{2,maxp(z)}, then the gradient preserves the initial order of integrability in time, gains global higher integrability, and the solution acquires the second-order regularity in the following sense:|u(x,t)|Lr(Ω) for a.e. t(0,T),|u|p(z)+ρ+r2L1(QT) for any ρ(0,4N+2), and|u|p(z)+r22uL2(0,T;W1,2(Ω))N. The exponent r is arbitrary and independent of p(z) if fLN+2(QT), while for fLσ(QT) with σ(2,N+2) the exponent r belongs to a bounded interval whose endpoints are defined by maxp(z), minp(z), N, and σ. An integration by parts formula is also proven, which is of independent interest.
非标准增长抛物型方程解的全局梯度估计
本文研究了一类抛物方程p(x,t)的Dirichlet问题解的全局正则性:laplace型:−Δp(⋅)u=f(z)+ f(z,u,∇u),z=(x,t)∈QT=Ω×(0, t),非线性源f(z,u,∇u)=a(z)|u|q(z)−2u+|∇u|s(z)−2(c→,∇u)。证明了一个解的存在性,若|∇u(x,0)|∈Lr(Ω)对于某些r≥max (2,max (p))},则梯度在时间上保持初始阶可积性,获得全局高可积性,且解在以下意义上获得二阶正则性:对于a.e. t∈(0,t),|∇u (x,t)|∈Lr(Ω),对于任意ρ∈(0,4n +2), |∇u|p(z)+ρ+r−2∈L1(QT),以及|∇u|p(z)+r2−2∇u∈L2(0, t; w1,2 (Ω))N,|∇u (x,t)|∈Lr(Ω)。如果f∈LN+2(QT),指数r是任意的,与p(z)无关,而对于f∈Lσ(QT), σ∈(2,N+2),指数r属于一个有界区间,其端点由max (p(z), min (z), N和σ定义。还证明了一个有独立意义的分部积分公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信