Practical application of artificial intelligence for ecological image analysis: Trialling different levels of taxonomic classification to promote convolutional neural network performance
Amelia E.H. Bridges , Eleanor Cross , Kyran P. Graves , Nils Piechaud , Antony Raymont , Kerry L. Howell
{"title":"Practical application of artificial intelligence for ecological image analysis: Trialling different levels of taxonomic classification to promote convolutional neural network performance","authors":"Amelia E.H. Bridges , Eleanor Cross , Kyran P. Graves , Nils Piechaud , Antony Raymont , Kerry L. Howell","doi":"10.1016/j.ecoinf.2025.103146","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of artificial intelligence (AI), particularly convolutional neural networks (CNNs), into ecological research presents new opportunities for the automated analysis of image-based data. This study explores the practical application of CNNs for ecological image analysis by trialling annotation to different levels of taxonomic classification to determine their impact on model performance. We systematically compare various annotation strategies, evaluating their effects on the accuracy of CNNs in ecological contexts; as well as considering the feasibility of manually annotating training data to different levels. We demonstrate that variation in annotations groupings (animal, phylum or morphology) has little impact on model performance, despite large differences in class numbers. Consequently, the decision for annotators should hinge on whether to invest effort in detailed annotation at the beginning of a project or to perform finer sorting of model predictions at the end. These findings provide practical guidance for optimizing the workflow in AI-driven ecological studies, offering flexibility without compromising model performance.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"88 ","pages":"Article 103146"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125001554","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of artificial intelligence (AI), particularly convolutional neural networks (CNNs), into ecological research presents new opportunities for the automated analysis of image-based data. This study explores the practical application of CNNs for ecological image analysis by trialling annotation to different levels of taxonomic classification to determine their impact on model performance. We systematically compare various annotation strategies, evaluating their effects on the accuracy of CNNs in ecological contexts; as well as considering the feasibility of manually annotating training data to different levels. We demonstrate that variation in annotations groupings (animal, phylum or morphology) has little impact on model performance, despite large differences in class numbers. Consequently, the decision for annotators should hinge on whether to invest effort in detailed annotation at the beginning of a project or to perform finer sorting of model predictions at the end. These findings provide practical guidance for optimizing the workflow in AI-driven ecological studies, offering flexibility without compromising model performance.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.