Additive manufacturing of continuous regenerated cellulose fiber reinforced polylactic acid composites using in-situ impregnation material extrusion technique

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Nishant Jain , Mathias Czasny , Till Butzmann , Delf Kober , David Karl , David Schmiedjell , Sabine Hild , Aleksander Gurlo
{"title":"Additive manufacturing of continuous regenerated cellulose fiber reinforced polylactic acid composites using in-situ impregnation material extrusion technique","authors":"Nishant Jain ,&nbsp;Mathias Czasny ,&nbsp;Till Butzmann ,&nbsp;Delf Kober ,&nbsp;David Karl ,&nbsp;David Schmiedjell ,&nbsp;Sabine Hild ,&nbsp;Aleksander Gurlo","doi":"10.1016/j.jcomc.2025.100594","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores an innovative approach to additively manufacture 100 % bio-derived, biodegradable polylactic acid (PLA) reinforced with continuous regenerated cellulose fibres (RCFs) using an <em>in-situ</em> infiltration material extrusion technique. The impact of fiber crystallinity, surface properties, cross-sectional geometry and PLA's thermal and rheological behaviour is analysed. Single fiber pull-out test (SFPT) is utilised to evaluate fibre-matrix interactions, while tensile and flexural properties are assessed in conjunction with void analysis via optical and AFM micrographs. The results show that Biomid fibres, which exhibit ∼65 % crystallinity, demonstrate ∼31 % higher apparent interfacial shear strength (IFSS) compared to Cordenka fibres, which exhibit ∼42 % crystallinity. Furthermore, Biomid-PLA composites show a substantial increase in tensile strength, reaching ∼290 % higher and tensile modulus reaching ∼470 % higher than unreinforced PLA. In addition, the flexural strength and modulus of the Biomid-PLA composite increased by ∼71 % and ∼120 %, compared to unreinforced PLA.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"17 ","pages":"Article 100594"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores an innovative approach to additively manufacture 100 % bio-derived, biodegradable polylactic acid (PLA) reinforced with continuous regenerated cellulose fibres (RCFs) using an in-situ infiltration material extrusion technique. The impact of fiber crystallinity, surface properties, cross-sectional geometry and PLA's thermal and rheological behaviour is analysed. Single fiber pull-out test (SFPT) is utilised to evaluate fibre-matrix interactions, while tensile and flexural properties are assessed in conjunction with void analysis via optical and AFM micrographs. The results show that Biomid fibres, which exhibit ∼65 % crystallinity, demonstrate ∼31 % higher apparent interfacial shear strength (IFSS) compared to Cordenka fibres, which exhibit ∼42 % crystallinity. Furthermore, Biomid-PLA composites show a substantial increase in tensile strength, reaching ∼290 % higher and tensile modulus reaching ∼470 % higher than unreinforced PLA. In addition, the flexural strength and modulus of the Biomid-PLA composite increased by ∼71 % and ∼120 %, compared to unreinforced PLA.

Abstract Image

本研究探索了一种创新方法,即利用原位浸润材料挤压技术,添加制造由连续再生纤维素纤维(RCFs)增强的 100% 生物衍生、可生物降解聚乳酸(PLA)。分析了纤维结晶度、表面特性、横截面几何形状以及聚乳酸热和流变行为的影响。利用单纤维拉出试验(SFPT)评估纤维与基质之间的相互作用,同时通过光学和原子力显微镜显微照片结合空隙分析评估拉伸和弯曲性能。结果表明,与结晶度为 42% 的 Cordenka 纤维相比,结晶度为 65% 的 Biomid 纤维的表观界面剪切强度(IFSS)高出 31%。此外,与未增强的聚乳酸相比,Biomid-PLA 复合材料的拉伸强度和拉伸模量分别提高了 290%和 470%。此外,与未增强聚乳酸相比,Biomid-PLA 复合材料的抗弯强度和模量分别提高了 71 % 和 120 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信