Han Tang , Xiaoli Wang , Sha Qiu , Yuying Wang , Xiangnan Zhang , Yanzhong Zhang
{"title":"Low-density electrospun fibrous network promotes mechanotransduction and matrix remodeling in fibroblasts","authors":"Han Tang , Xiaoli Wang , Sha Qiu , Yuying Wang , Xiangnan Zhang , Yanzhong Zhang","doi":"10.1016/j.bioadv.2025.214316","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical interactions between cells and fiber-dominated extracellular matrix (ECM) are crucial in regulating matrix-remodeling and cellular physiological processes. Electrospun fibers, as a type of biomimicking fibers, provide an ideal platform for engineering a variety of tissues <em>in vitro</em>. However, the mechanisms by which electrospun fibers promote cellular matrix-remodeling, particularly concerning the characteristic mechanical compliance in the fibers, remain inadequately understood due to the crossing and entanglement of electrospun ultrafine fibers in those densely packed fibrous mats. This study devised low-density fibrous network and mechanically sensitive fibroblasts to investigate how cells sense, respond to, and remodel the residing microenvironment at both cellular and molecular levels. The results showed that the fibroblasts cultured on the low-density fibrous network exhibited a contractile phenotype, as evidenced by the upregulated transcription and synthesis of ECM-related proteins as well as fiber recruitment capability, thereby displaying a greater capacity in matrix-remodeling. Analysis of mechanotransduction-related markers revealed that the RhoA-ROCK signaling pathway was activated in the low-density fibrous network-substrated fibroblasts. Additionally, enhanced cytoskeletal assembly, cell contractility, YAP nuclear translocation, and activation of Piezo1 were observed. Inhibition of ROCK disrupted mechanotransduction, consequently impairing the cell's matrix-remodeling capacity. These findings demonstrate that the low-density electrospun fibrous network promotes the cell-mediated matrix-remodeling by facilitating mechanotransduction signaling. This study establishes a theoretical framework for understanding how electrospun fibers regulate cellular function at the micro-mechanical level and may shed insights on the design of biomimetic fibrous scaffolds for promoting tissue regeneration.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"174 ","pages":"Article 214316"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825001438","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical interactions between cells and fiber-dominated extracellular matrix (ECM) are crucial in regulating matrix-remodeling and cellular physiological processes. Electrospun fibers, as a type of biomimicking fibers, provide an ideal platform for engineering a variety of tissues in vitro. However, the mechanisms by which electrospun fibers promote cellular matrix-remodeling, particularly concerning the characteristic mechanical compliance in the fibers, remain inadequately understood due to the crossing and entanglement of electrospun ultrafine fibers in those densely packed fibrous mats. This study devised low-density fibrous network and mechanically sensitive fibroblasts to investigate how cells sense, respond to, and remodel the residing microenvironment at both cellular and molecular levels. The results showed that the fibroblasts cultured on the low-density fibrous network exhibited a contractile phenotype, as evidenced by the upregulated transcription and synthesis of ECM-related proteins as well as fiber recruitment capability, thereby displaying a greater capacity in matrix-remodeling. Analysis of mechanotransduction-related markers revealed that the RhoA-ROCK signaling pathway was activated in the low-density fibrous network-substrated fibroblasts. Additionally, enhanced cytoskeletal assembly, cell contractility, YAP nuclear translocation, and activation of Piezo1 were observed. Inhibition of ROCK disrupted mechanotransduction, consequently impairing the cell's matrix-remodeling capacity. These findings demonstrate that the low-density electrospun fibrous network promotes the cell-mediated matrix-remodeling by facilitating mechanotransduction signaling. This study establishes a theoretical framework for understanding how electrospun fibers regulate cellular function at the micro-mechanical level and may shed insights on the design of biomimetic fibrous scaffolds for promoting tissue regeneration.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!