Quantitative assessment of metabolic memory and its prediction of renal function decline in patients with type 2 diabetes: A retrospective observational study

IF 4.3 Q1 ENDOCRINOLOGY & METABOLISM
Kentaro Oniki , Takuro Shigaki , Ayami Kajiwara-Morita , Keiichi Shigetome , Akira Yoshida , Hideaki Jinnouchi , Junji Saruwatari
{"title":"Quantitative assessment of metabolic memory and its prediction of renal function decline in patients with type 2 diabetes: A retrospective observational study","authors":"Kentaro Oniki ,&nbsp;Takuro Shigaki ,&nbsp;Ayami Kajiwara-Morita ,&nbsp;Keiichi Shigetome ,&nbsp;Akira Yoshida ,&nbsp;Hideaki Jinnouchi ,&nbsp;Junji Saruwatari","doi":"10.1016/j.dsx.2025.103225","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>This study quantitatively assesses metabolic memory by modeling the relationship between hyperglycemic exposure and renal function decline in patients with type 2 diabetes (T2D).</div></div><div><h3>Methods</h3><div>This retrospective longitudinal study included 381 Japanese patients with T2D. Hyperglycemic exposure was presented by calculating the area under the curve (AUC) for HbA1c ≥ 6 % (AUC<sub>HbA1c ≥ 6 %</sub>) during the observation period. A non-linear mixed-effects model was constructed to predict changes in estimated glomerular filtration rate (eGFR) based on AUC<sub>HbA1c ≥ 6 %</sub>.</div></div><div><h3>Results</h3><div>The relationship between AUC<sub>HbA1c ≥ 6 %</sub> and eGFR changes was shown by a sigmoidal curve, with sex, age, diabetic retinopathy, dyslipidemia, and hypertension incorporated as covariates. The predictive utility of the model was validated using goodness-of-fit plot, visual predictive check, and bootstrap methods.</div></div><div><h3>Conclusions</h3><div>We developed an AUC<sub>HbA1c ≥ 6 %</sub>-based model to predict renal function decline in patients with T2D, showing that AUC<sub>HbA1c ≥ 6 %</sub> may serve as a quantitative indicator of metabolic memory.</div></div>","PeriodicalId":48252,"journal":{"name":"Diabetes & Metabolic Syndrome-Clinical Research & Reviews","volume":"19 4","pages":"Article 103225"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes & Metabolic Syndrome-Clinical Research & Reviews","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871402125000426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

This study quantitatively assesses metabolic memory by modeling the relationship between hyperglycemic exposure and renal function decline in patients with type 2 diabetes (T2D).

Methods

This retrospective longitudinal study included 381 Japanese patients with T2D. Hyperglycemic exposure was presented by calculating the area under the curve (AUC) for HbA1c ≥ 6 % (AUCHbA1c ≥ 6 %) during the observation period. A non-linear mixed-effects model was constructed to predict changes in estimated glomerular filtration rate (eGFR) based on AUCHbA1c ≥ 6 %.

Results

The relationship between AUCHbA1c ≥ 6 % and eGFR changes was shown by a sigmoidal curve, with sex, age, diabetic retinopathy, dyslipidemia, and hypertension incorporated as covariates. The predictive utility of the model was validated using goodness-of-fit plot, visual predictive check, and bootstrap methods.

Conclusions

We developed an AUCHbA1c ≥ 6 %-based model to predict renal function decline in patients with T2D, showing that AUCHbA1c ≥ 6 % may serve as a quantitative indicator of metabolic memory.
定量评估 2 型糖尿病患者的代谢记忆及其对肾功能衰退的预测:回顾性观察研究
目的:本研究通过模拟2型糖尿病(T2D)患者高血糖暴露与肾功能下降之间的关系,定量评估代谢记忆。方法对381例日本T2D患者进行回顾性纵向研究。通过计算观察期间HbA1c≥6% (AUCHbA1c≥6%)的曲线下面积(AUC)来表示高血糖暴露。建立非线性混合效应模型,以AUCHbA1c≥6%为基础预测肾小球滤过率(eGFR)的变化。结果AUCHbA1c≥6%与eGFR变化呈s型曲线关系,协变量包括性别、年龄、糖尿病视网膜病变、血脂异常和高血压。使用拟合优度图、视觉预测检查和自举方法验证了模型的预测效用。我们建立了一个基于AUCHbA1c≥6%的模型来预测T2D患者的肾功能下降,表明AUCHbA1c≥6%可以作为代谢记忆的定量指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
22.90
自引率
2.00%
发文量
248
审稿时长
51 days
期刊介绍: Diabetes and Metabolic Syndrome: Clinical Research and Reviews is the official journal of DiabetesIndia. It aims to provide a global platform for healthcare professionals, diabetes educators, and other stakeholders to submit their research on diabetes care. Types of Publications: Diabetes and Metabolic Syndrome: Clinical Research and Reviews publishes peer-reviewed original articles, reviews, short communications, case reports, letters to the Editor, and expert comments. Reviews and mini-reviews are particularly welcomed for areas within endocrinology undergoing rapid changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信