An integrated framework for Multi-AMR based CL-CBS and MPC-APF in warehousing scenario

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xu Sun , Ming Yue , Heyang Wang , Yang Liu , Xudong Zhao
{"title":"An integrated framework for Multi-AMR based CL-CBS and MPC-APF in warehousing scenario","authors":"Xu Sun ,&nbsp;Ming Yue ,&nbsp;Heyang Wang ,&nbsp;Yang Liu ,&nbsp;Xudong Zhao","doi":"10.1016/j.simpat.2025.103122","DOIUrl":null,"url":null,"abstract":"<div><div>Aiming at the problem of Multi-Autonomous mobile robots (Multi-AMR) performing autonomous handling tasks in warehouse scenario, this paper proposes a framework that combines the Car like-Conflict based search algorithm (CL-CBS) and the Model predictive control-Artificial potential field algorithm (MPC-APF) is proposed for local trajectory replanning and tracking control. First, the CL-CBS is employed at the global trajectory planning layer; the algorithm uses a binary tree-based conflict search algorithm at the top-level and a spatiotemporal Hybrid-A* algorithm at the lower-level, which allows Multi-AMR to plan collision-free trajectories in compliance with the Ackermann kinematic characteristics. Second, at the trajectory replanning layer, the quintic polynomial equation is employed to fit segments to the discrete points with temporal information to enhance the smoothness and feasibility of the trajectory. Then, an function is proposed which incorporates the features of the APF in the form of an obstacle avoidance function into the optimization solution of the MPC. Finally, at the trajectory tracking control layer, a leapfrog speed planning is proposed, and a dynamics model is used to perform tracking control on the trajectories input from the replanning layer. Moreover, a structured warehousing map is built on virtual environments to validate the framework, and the results verify its safety and feasibility.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"142 ","pages":"Article 103122"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25000577","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem of Multi-Autonomous mobile robots (Multi-AMR) performing autonomous handling tasks in warehouse scenario, this paper proposes a framework that combines the Car like-Conflict based search algorithm (CL-CBS) and the Model predictive control-Artificial potential field algorithm (MPC-APF) is proposed for local trajectory replanning and tracking control. First, the CL-CBS is employed at the global trajectory planning layer; the algorithm uses a binary tree-based conflict search algorithm at the top-level and a spatiotemporal Hybrid-A* algorithm at the lower-level, which allows Multi-AMR to plan collision-free trajectories in compliance with the Ackermann kinematic characteristics. Second, at the trajectory replanning layer, the quintic polynomial equation is employed to fit segments to the discrete points with temporal information to enhance the smoothness and feasibility of the trajectory. Then, an function is proposed which incorporates the features of the APF in the form of an obstacle avoidance function into the optimization solution of the MPC. Finally, at the trajectory tracking control layer, a leapfrog speed planning is proposed, and a dynamics model is used to perform tracking control on the trajectories input from the replanning layer. Moreover, a structured warehousing map is built on virtual environments to validate the framework, and the results verify its safety and feasibility.
仓储场景中基于多amr的CL-CBS和MPC-APF集成框架
针对多自主移动机器人(Multi-AMR)在仓库场景下执行自主搬运任务的问题,提出了一种结合基于类车冲突的搜索算法(CL-CBS)和模型预测控制-人工势场算法(MPC-APF)的局部轨迹重规划和跟踪控制框架。首先,在全局轨迹规划层采用CL-CBS;该算法在顶层使用基于二叉树的冲突搜索算法,在底层使用时空Hybrid-A*算法,使Multi-AMR能够根据Ackermann运动学特征规划无碰撞轨迹。其次,在轨迹重规划层,利用五次多项式方程对离散点进行分段拟合,增强轨迹的平滑性和可行性;然后,提出了一个函数,将APF的特征以避障函数的形式融入MPC的优化解中。最后,在轨迹跟踪控制层,提出了一种跨越式速度规划,并利用动力学模型对重规划层输入的轨迹进行跟踪控制。并在虚拟环境中建立了结构化的仓储图,验证了该框架的安全性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Simulation Modelling Practice and Theory
Simulation Modelling Practice and Theory 工程技术-计算机:跨学科应用
CiteScore
9.80
自引率
4.80%
发文量
142
审稿时长
21 days
期刊介绍: The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling. The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas. Paper submission is solicited on: • theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.; • methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.; • simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.; • distributed and real-time simulation, simulation interoperability; • tools for high performance computing simulation, including dedicated architectures and parallel computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信