Integrating spatiotemporal behavior, indoor-outdoor penetration, and ventilation rates to assess prenatal PM2.5 exposure and the association with birth weight
Dan Long , Xin Chen , Maimaitiminjiang Wulayin , Miaochan Zhu , Huailin Wang , Junwei Wu , Jianyong Lu , Liecheng Hong , Qing Wang , Zhenghong Zhu , Xiaoxin Zhang , Cunrui Huang , Qiong Wang
{"title":"Integrating spatiotemporal behavior, indoor-outdoor penetration, and ventilation rates to assess prenatal PM2.5 exposure and the association with birth weight","authors":"Dan Long , Xin Chen , Maimaitiminjiang Wulayin , Miaochan Zhu , Huailin Wang , Junwei Wu , Jianyong Lu , Liecheng Hong , Qing Wang , Zhenghong Zhu , Xiaoxin Zhang , Cunrui Huang , Qiong Wang","doi":"10.1016/j.apr.2025.102530","DOIUrl":null,"url":null,"abstract":"<div><div>Previous studies that evaluated the association of PM<sub>2.5</sub> with birth outcomes usually assessed personal exposure as outdoor PM<sub>2.5</sub> concentrations of home address (home-based exposure), overlooking factors such as individual spatiotemporal activities, which may result in exposure error. In a prospective birth cohort conducted in Guangzhou, China during 2017–2020, personal PM<sub>2.5</sub> exposure assessment was updated. We incorporated spatiotemporal activities into the exposure assessment by estimating PM<sub>2.5</sub> exposure for each activity based on its specific location and duration. Additionally, an infiltration factor was applied to estimate indoor-outdoor penetration, and ventilation rates (different age groups and activity levels) were used to better adjust individual exposure levels. Logistic regression and distributed lag non-liner model with Cox proportional hazard model were used to assess the associations of prenatal PM<sub>2.5</sub> exposure with low birth weight (LBW) and small for gestational age at a trimester and weekly level, respectively. Updated personal PM<sub>2.5</sub> exposure was lower than the home-based PM<sub>2.5</sub>. Per interquartile range increase in PM<sub>2.5</sub> during the third trimester was associated with increased risk of LBW, with ORs (95 % CIs) was 2.17 (1.14–4.14) for updated personal exposure and 2.30 (1.17–4.55) for home-based exposure. Updated personal PM<sub>2.5</sub> in the 6th-7th, home-based PM<sub>2.5</sub> in the 5th-7th, and both PM<sub>2.5</sub> exposure in the 35th week later was associated with LBW. Our findings suggest that spatiotemporal activities, indoor-outdoor penetration, ventilation rate should be taken into account of exposure assessment, otherwise PM<sub>2.5</sub> exposure and the association with adverse birth outcomes may be overestimated.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"16 7","pages":"Article 102530"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104225001321","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies that evaluated the association of PM2.5 with birth outcomes usually assessed personal exposure as outdoor PM2.5 concentrations of home address (home-based exposure), overlooking factors such as individual spatiotemporal activities, which may result in exposure error. In a prospective birth cohort conducted in Guangzhou, China during 2017–2020, personal PM2.5 exposure assessment was updated. We incorporated spatiotemporal activities into the exposure assessment by estimating PM2.5 exposure for each activity based on its specific location and duration. Additionally, an infiltration factor was applied to estimate indoor-outdoor penetration, and ventilation rates (different age groups and activity levels) were used to better adjust individual exposure levels. Logistic regression and distributed lag non-liner model with Cox proportional hazard model were used to assess the associations of prenatal PM2.5 exposure with low birth weight (LBW) and small for gestational age at a trimester and weekly level, respectively. Updated personal PM2.5 exposure was lower than the home-based PM2.5. Per interquartile range increase in PM2.5 during the third trimester was associated with increased risk of LBW, with ORs (95 % CIs) was 2.17 (1.14–4.14) for updated personal exposure and 2.30 (1.17–4.55) for home-based exposure. Updated personal PM2.5 in the 6th-7th, home-based PM2.5 in the 5th-7th, and both PM2.5 exposure in the 35th week later was associated with LBW. Our findings suggest that spatiotemporal activities, indoor-outdoor penetration, ventilation rate should be taken into account of exposure assessment, otherwise PM2.5 exposure and the association with adverse birth outcomes may be overestimated.
期刊介绍:
Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.