A hybrid AI-CFD framework for optimizing heat transfer of a premixed methane-air flame jet on inclined surfaces

Q1 Chemical Engineering
Panit Kamma , Kittipos Loksupapaiboon , Juthanee Phromjan , Chakrit Suvanjumrat
{"title":"A hybrid AI-CFD framework for optimizing heat transfer of a premixed methane-air flame jet on inclined surfaces","authors":"Panit Kamma ,&nbsp;Kittipos Loksupapaiboon ,&nbsp;Juthanee Phromjan ,&nbsp;Chakrit Suvanjumrat","doi":"10.1016/j.ijft.2025.101206","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel integration of artificial intelligence (AI) and computational fluid dynamics (CFD) simulations to investigate and optimize the heat transfer characteristics of a premixed methane-air flame jet impinging on an inclined surface. Key parameters—including the mixture equivalence ratio (ϕ = 0.8–2.0), burner-to-plate distance (H/<em>d</em> = 2–6), Reynolds number (<em>Re</em> = 400–1200), and plate inclination angle (θ = 0°–90°)—were systematically analyzed to evaluate their effects on heat flux distribution and thermal efficiency. Using OpenFOAM, the laminar flame behavior was modeled under diverse conditions, revealing strong agreement with experimental data, with average errors of 6.23 % for flame height and 6.47 % for thermal efficiency. To reduce the computational expense of these simulations, a hybrid Artificial Neural Network-Genetic Algorithm (ANN-GA) model was developed. The ANN accurately predicted thermal efficiency based on operational parameters, while the GA optimized these inputs to achieve maximum thermal efficiency of 76.9955 %, closely matching the CFD-predicted value of 70.86 % (discrepancy:6.1355 %). The ANN-GA model demonstrated a low absolute error of 7.97 %, confirming its reliability and precision. This research is the first to establish a robust AI-driven framework for optimizing flame jet heat transfer performance on inclined surfaces, offering valuable insights for improving industrial heating processes and advancing the application of AI in thermal system design.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"27 ","pages":"Article 101206"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725001533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel integration of artificial intelligence (AI) and computational fluid dynamics (CFD) simulations to investigate and optimize the heat transfer characteristics of a premixed methane-air flame jet impinging on an inclined surface. Key parameters—including the mixture equivalence ratio (ϕ = 0.8–2.0), burner-to-plate distance (H/d = 2–6), Reynolds number (Re = 400–1200), and plate inclination angle (θ = 0°–90°)—were systematically analyzed to evaluate their effects on heat flux distribution and thermal efficiency. Using OpenFOAM, the laminar flame behavior was modeled under diverse conditions, revealing strong agreement with experimental data, with average errors of 6.23 % for flame height and 6.47 % for thermal efficiency. To reduce the computational expense of these simulations, a hybrid Artificial Neural Network-Genetic Algorithm (ANN-GA) model was developed. The ANN accurately predicted thermal efficiency based on operational parameters, while the GA optimized these inputs to achieve maximum thermal efficiency of 76.9955 %, closely matching the CFD-predicted value of 70.86 % (discrepancy:6.1355 %). The ANN-GA model demonstrated a low absolute error of 7.97 %, confirming its reliability and precision. This research is the first to establish a robust AI-driven framework for optimizing flame jet heat transfer performance on inclined surfaces, offering valuable insights for improving industrial heating processes and advancing the application of AI in thermal system design.
基于AI-CFD的倾斜表面预混甲烷-空气火焰射流传热优化研究
本研究提出了一种新颖的人工智能(AI)与计算流体动力学(CFD)模拟集成方法,用于研究和优化冲击倾斜表面的预混合甲烷-空气火焰射流的传热特性。系统分析了关键参数,包括混合物当量比(j = 0.8-2.0)、燃烧器与板的距离(H/d = 2-6)、雷诺数(Re = 400-1200)和板倾角(θ = 0°-90°),以评估它们对热通量分布和热效率的影响。使用 OpenFOAM 模拟了不同条件下的层流火焰行为,结果显示与实验数据非常吻合,火焰高度的平均误差为 6.23%,热效率的平均误差为 6.47%。为了减少这些模拟的计算费用,开发了人工神经网络-遗传算法(ANN-GA)混合模型。人工神经网络根据运行参数准确预测了热效率,而遗传算法则对这些输入进行了优化,使热效率达到最大值 76.9955%,与 CFD 预测值 70.86% 非常接近(差异:6.1355%)。ANN-GA 模型的绝对误差仅为 7.97%,证明了其可靠性和精确性。这项研究首次建立了一个稳健的人工智能驱动框架,用于优化倾斜表面上的火焰喷射传热性能,为改进工业加热过程提供了宝贵的见解,并推动了人工智能在热系统设计中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信