Light/dark cycles and iron supplementation to enhance the simultaneous production of polyhydroxyalkanoates, 5-aminolevulinic acid, coenzyme Q10, and pigments through photofermentation
{"title":"Light/dark cycles and iron supplementation to enhance the simultaneous production of polyhydroxyalkanoates, 5-aminolevulinic acid, coenzyme Q10, and pigments through photofermentation","authors":"Virginia Montiel-Corona , Germán Buitrón","doi":"10.1016/j.biortech.2025.132513","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to obtain 5-aminolevulinic acid (5-ALA), Coenzyme Q<sub>10</sub> (CoQ<sub>10</sub>), polyhydroxyalkanoates (PHA), carotenoids, and bacteriochlorophylls (Bchl) through the photofermentation of residual wine lees. Light/dark cycles and iron supplementation were evaluated. Under 12-hour light/dark cycles, the production of 5-ALA, CoQ<sub>10</sub>, carotenoids, and Bchl increased by 1.7, 2.8, 1.7, and 2.4 times, respectively, compared to the continuous illumination control, while PHA production decreased from 511 to 445 mg/L. Combining light/dark cycles with iron supplementation enhanced the biomass production rate. The CoQ<sub>10</sub> content increased by 4.9 times (reaching 8.8 mg/g-dw), carotenoids by 3.7 times (6.4 mg/g-dw), and Bchl by 6.4 times (17.9 mg/g-dw) compared to the control treatment, while maintaining 5-ALA at 5.3 µmol/L and PHA at 377 mg/L. The combination of light/dark cycles and iron provides a triple benefit: increased production of value-added substances, enhanced biomass production rate, and improved organic matter removal, making it an attractive option for winery effluent treatment and valorization.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"429 ","pages":"Article 132513"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425004791","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to obtain 5-aminolevulinic acid (5-ALA), Coenzyme Q10 (CoQ10), polyhydroxyalkanoates (PHA), carotenoids, and bacteriochlorophylls (Bchl) through the photofermentation of residual wine lees. Light/dark cycles and iron supplementation were evaluated. Under 12-hour light/dark cycles, the production of 5-ALA, CoQ10, carotenoids, and Bchl increased by 1.7, 2.8, 1.7, and 2.4 times, respectively, compared to the continuous illumination control, while PHA production decreased from 511 to 445 mg/L. Combining light/dark cycles with iron supplementation enhanced the biomass production rate. The CoQ10 content increased by 4.9 times (reaching 8.8 mg/g-dw), carotenoids by 3.7 times (6.4 mg/g-dw), and Bchl by 6.4 times (17.9 mg/g-dw) compared to the control treatment, while maintaining 5-ALA at 5.3 µmol/L and PHA at 377 mg/L. The combination of light/dark cycles and iron provides a triple benefit: increased production of value-added substances, enhanced biomass production rate, and improved organic matter removal, making it an attractive option for winery effluent treatment and valorization.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.