Superior delamination resistant two-dimensional lamellar materials

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kaiwen Li , Lidan Wang , Feifan Chen , Jiahao Lu , Rui Guo , Yue Gao , Shiyu Luo , Xin Ming , Yue Lin , Zhen Xu , Manyi Huang , Chao Wang , Yingjun Liu , Chao Gao
{"title":"Superior delamination resistant two-dimensional lamellar materials","authors":"Kaiwen Li ,&nbsp;Lidan Wang ,&nbsp;Feifan Chen ,&nbsp;Jiahao Lu ,&nbsp;Rui Guo ,&nbsp;Yue Gao ,&nbsp;Shiyu Luo ,&nbsp;Xin Ming ,&nbsp;Yue Lin ,&nbsp;Zhen Xu ,&nbsp;Manyi Huang ,&nbsp;Chao Wang ,&nbsp;Yingjun Liu ,&nbsp;Chao Gao","doi":"10.1016/j.mattod.2025.02.011","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous 2D sheets are generally exfoliated and prevalent to be assembled into macroscopic lamellar materials. However, these highly expected materials still inherit the easy exfoliation of 2D sheets and exhibit severe delamination failure problems, despite their outstanding in-plane performances and functions. Here, we find the increasing stack order of 2D sheets inversely aggravates delamination and uncover the hidden interlayer dissipation as the dominating mechanism. We propose a strong interlayer entanglement toughening strategy to greatly improve the delamination strength of graphene oxide papers by 268%, achieving a superior delamination resistance of benchmark natural nacres. The interlayer disentanglement offers extra dissipative sites to alleviate the stress concentration of the crack tip and suppress the crack propagation. This work provides an effective structural design strategy to resolve the intrinsic delamination problem of 2D lamellar materials, paving the way to realistic applications as structural materials and durable coatings.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"85 ","pages":"Pages 39-48"},"PeriodicalIF":21.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702125000598","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous 2D sheets are generally exfoliated and prevalent to be assembled into macroscopic lamellar materials. However, these highly expected materials still inherit the easy exfoliation of 2D sheets and exhibit severe delamination failure problems, despite their outstanding in-plane performances and functions. Here, we find the increasing stack order of 2D sheets inversely aggravates delamination and uncover the hidden interlayer dissipation as the dominating mechanism. We propose a strong interlayer entanglement toughening strategy to greatly improve the delamination strength of graphene oxide papers by 268%, achieving a superior delamination resistance of benchmark natural nacres. The interlayer disentanglement offers extra dissipative sites to alleviate the stress concentration of the crack tip and suppress the crack propagation. This work provides an effective structural design strategy to resolve the intrinsic delamination problem of 2D lamellar materials, paving the way to realistic applications as structural materials and durable coatings.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信