Haihan Zhang , Siyuan Lin , Chengyong Shu , Zexun Tang , Xiaowei Wang , Yuping Wu , Wei Tang
{"title":"Advances and perspectives of hard carbon anode modulated by defect/hetero elemental engineering for sodium ion batteries","authors":"Haihan Zhang , Siyuan Lin , Chengyong Shu , Zexun Tang , Xiaowei Wang , Yuping Wu , Wei Tang","doi":"10.1016/j.mattod.2025.02.014","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium-ion batteries (SIBs) serve as a promising complement to lithium-ion batteries for large-scale energy storage, leveraging the abundance of sodium resources and notable safety advantages. The key advancement in SIB industrialization hinges on identifying a cost-effective and high-performance anode material, similar to the graphite anode in lithium-ion batteries. Hard carbon emerges as prime anode materials for SIBs, boasting high specific capacity, low sodium storage potential, and wide availability. However, practical applications of hard carbon encounters challenges such as low initial Coulombic efficiency (ICE), inadequate long-term cycling stability, and poor rate performance. Recent research has focused on the optimization of hard carbon electrodes through functional design. In this comprehensive review, we have meticulously examined the progress in enhancing sodium storage performance through microstructural modulation within hard carbon, encompassing four pivotal aspects: heteroatom doping, incorporation of oxygen functional groups, surface coating, and intrinsic defect engineering. Progress in implementing these strategies is scrutinized, while the merits and challenges of each defect engineering approach are discussed. This review also looks into forthcoming opportunities and challenges in the practical application process of hard carbon electrodes in SIBs.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"85 ","pages":"Pages 231-252"},"PeriodicalIF":21.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702125000616","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium-ion batteries (SIBs) serve as a promising complement to lithium-ion batteries for large-scale energy storage, leveraging the abundance of sodium resources and notable safety advantages. The key advancement in SIB industrialization hinges on identifying a cost-effective and high-performance anode material, similar to the graphite anode in lithium-ion batteries. Hard carbon emerges as prime anode materials for SIBs, boasting high specific capacity, low sodium storage potential, and wide availability. However, practical applications of hard carbon encounters challenges such as low initial Coulombic efficiency (ICE), inadequate long-term cycling stability, and poor rate performance. Recent research has focused on the optimization of hard carbon electrodes through functional design. In this comprehensive review, we have meticulously examined the progress in enhancing sodium storage performance through microstructural modulation within hard carbon, encompassing four pivotal aspects: heteroatom doping, incorporation of oxygen functional groups, surface coating, and intrinsic defect engineering. Progress in implementing these strategies is scrutinized, while the merits and challenges of each defect engineering approach are discussed. This review also looks into forthcoming opportunities and challenges in the practical application process of hard carbon electrodes in SIBs.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.