Mohammad Aqa Mohammadi , Yining Wang , Chunyin Zhang , Haifeng Ma , Jin Sun , Lulu Wang , Xiaoping Niu , Gang Wang , Ping Zheng , Lichen Wang , Sheng Wang , Yuan Qin , Yan Cheng
{"title":"Heterologous overexpression of the Suaeda glauca stress-associated protein (SAP) family genes enhanced salt tolerance in Arabidopsis transgenic lines","authors":"Mohammad Aqa Mohammadi , Yining Wang , Chunyin Zhang , Haifeng Ma , Jin Sun , Lulu Wang , Xiaoping Niu , Gang Wang , Ping Zheng , Lichen Wang , Sheng Wang , Yuan Qin , Yan Cheng","doi":"10.1016/j.plaphy.2025.109868","DOIUrl":null,"url":null,"abstract":"<div><div>Stress-associated proteins (SAPs), characterized by zinc finger domains, play a crucial role in regulating plant responses to various stresses. These proteins modulate stress-related gene expression and are integral to enhancing plant immunity, development, cell proliferation, and hormone regulation. In this study, we conducted a genome-wide analysis of the SAP gene family in <em>Suaeda glauca</em> (<em>S. glauca</em>), identifying 15 SAP genes encoding A20/AN1 zinc finger proteins. Functional analyses of three candidate genes under salinity stress were performed, examining phenotypic and physiological responses to better understand their role in stress tolerance. Sequence alignment, conserved domain analysis, and gene structure analysis revealed high conservation among <em>S. glauca</em> SAPs. Phylogenetic analysis identified two major groups within the gene family, providing insights into their evolutionary relationships. Transcription profiling analysis demonstrated significant expression of most SAP genes in response to salt stress, with qPCR validation confirming the upregulation of specific genes. Notably, transgenic <em>Arabidopsis</em> lines heterologously overexpressing the candidate genes <em>SgSAP4</em>, <em>SgSAP5</em>, and <em>SgSAP7</em> demonstrated enhanced tolerance to salinity stress. This was evident from improved seed germination, root elongation, and reduced levels of stress markers, including malondialdehyde and free proline, compared to wild-type plants. These findings highlight the potential of these SAP genes in breeding programs aimed at improving salinity tolerance in crops.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"224 ","pages":"Article 109868"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825003961","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stress-associated proteins (SAPs), characterized by zinc finger domains, play a crucial role in regulating plant responses to various stresses. These proteins modulate stress-related gene expression and are integral to enhancing plant immunity, development, cell proliferation, and hormone regulation. In this study, we conducted a genome-wide analysis of the SAP gene family in Suaeda glauca (S. glauca), identifying 15 SAP genes encoding A20/AN1 zinc finger proteins. Functional analyses of three candidate genes under salinity stress were performed, examining phenotypic and physiological responses to better understand their role in stress tolerance. Sequence alignment, conserved domain analysis, and gene structure analysis revealed high conservation among S. glauca SAPs. Phylogenetic analysis identified two major groups within the gene family, providing insights into their evolutionary relationships. Transcription profiling analysis demonstrated significant expression of most SAP genes in response to salt stress, with qPCR validation confirming the upregulation of specific genes. Notably, transgenic Arabidopsis lines heterologously overexpressing the candidate genes SgSAP4, SgSAP5, and SgSAP7 demonstrated enhanced tolerance to salinity stress. This was evident from improved seed germination, root elongation, and reduced levels of stress markers, including malondialdehyde and free proline, compared to wild-type plants. These findings highlight the potential of these SAP genes in breeding programs aimed at improving salinity tolerance in crops.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.