Biaxial strain effect in the room temperature formation of 2D diamond from graphene stacks

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
V. Rajaji , Riccardo Galafassi , Mohammad Hellani , Alexis Forestier , Flavio Siro Brigiano , Bruno Sousa Araújo , Agnès Piednoir , Hatem Diaf , Camille Maestre , Catherine Journet , Fabio Pietrucci , Antonio Gomes Souza Filho , Natalia del Fatti , Fabien Vialla , Alfonso San-Miguel
{"title":"Biaxial strain effect in the room temperature formation of 2D diamond from graphene stacks","authors":"V. Rajaji ,&nbsp;Riccardo Galafassi ,&nbsp;Mohammad Hellani ,&nbsp;Alexis Forestier ,&nbsp;Flavio Siro Brigiano ,&nbsp;Bruno Sousa Araújo ,&nbsp;Agnès Piednoir ,&nbsp;Hatem Diaf ,&nbsp;Camille Maestre ,&nbsp;Catherine Journet ,&nbsp;Fabio Pietrucci ,&nbsp;Antonio Gomes Souza Filho ,&nbsp;Natalia del Fatti ,&nbsp;Fabien Vialla ,&nbsp;Alfonso San-Miguel","doi":"10.1016/j.carbon.2025.120267","DOIUrl":null,"url":null,"abstract":"<div><div>Discovering innovative low-energy pathways to obtain room-temperature functional materials and novel methods to control their phase transitions presents far-reaching challenges. Conventional hydrostatic pressure and modern strain engineering are key practical tools to achieve tuning of material phases at both bulk and nanoscale levels. Here, we reveal the pivotal role of biaxial strain in the formation of 2D diamond-like sp<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> carbon from few-layer graphene (FLG) stacks at room temperature and pressure of 7 GPa. By employing <em>in situ</em> resonance Raman and optical absorption spectroscopies, utilizing van der Waals heterostructures (hBN/FLG) on different substrates (SiO<sub>2</sub>/Si and diamond) placed in a water environment under high-pressure, we unveil the key physical influence of in-plane biaxial strain induced by substrate compression along with the chemical interaction at the graphene-ice interface. <em>Ab initio</em> molecular dynamics simulations corroborate the role of both water and biaxial strain in locally stabilizing interlayer sp<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> carbon structures. This breakthrough not only advances nanodiamond technology but also establishes biaxial strain engineering as a promising tool to explore novel phases of 2D layered materials, enabling advanced functionalities at room temperature and near ambient conditions.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"239 ","pages":"Article 120267"},"PeriodicalIF":10.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325002830","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Discovering innovative low-energy pathways to obtain room-temperature functional materials and novel methods to control their phase transitions presents far-reaching challenges. Conventional hydrostatic pressure and modern strain engineering are key practical tools to achieve tuning of material phases at both bulk and nanoscale levels. Here, we reveal the pivotal role of biaxial strain in the formation of 2D diamond-like sp3 carbon from few-layer graphene (FLG) stacks at room temperature and pressure of 7 GPa. By employing in situ resonance Raman and optical absorption spectroscopies, utilizing van der Waals heterostructures (hBN/FLG) on different substrates (SiO2/Si and diamond) placed in a water environment under high-pressure, we unveil the key physical influence of in-plane biaxial strain induced by substrate compression along with the chemical interaction at the graphene-ice interface. Ab initio molecular dynamics simulations corroborate the role of both water and biaxial strain in locally stabilizing interlayer sp3 carbon structures. This breakthrough not only advances nanodiamond technology but also establishes biaxial strain engineering as a promising tool to explore novel phases of 2D layered materials, enabling advanced functionalities at room temperature and near ambient conditions.

Abstract Image

石墨烯叠层在室温下形成二维金刚石的双轴应变效应
发现创新的低能量途径来获得室温功能材料和新方法来控制其相变提出了深远的挑战。传统的静水压力和现代应变工程是实现体和纳米级材料相调谐的关键实用工具。在此,我们揭示了双轴应变在室温和7 GPa压力下由少层石墨烯(FLG)堆叠形成二维类金刚石sp3碳的关键作用。通过原位共振拉曼光谱和光学吸收光谱,利用高压水环境中不同衬底(SiO2/Si和金刚石)上的范德华异质结构(hBN/FLG),揭示了衬底压缩引起的平面内双轴应变的关键物理影响以及石墨烯-冰界面的化学相互作用。从头算分子动力学模拟证实了水和双轴应变在层间sp3碳结构局部稳定中的作用。这一突破不仅推动了纳米金刚石技术的发展,而且建立了双轴应变工程作为探索二维层状材料新相的有前途的工具,在室温和近环境条件下实现了先进的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信