Yong Wang , Qianqian Yang , Yanchao Lu , Lei Jiang , Rui Zhang , Siyu Jiang , Yuxuan Xu , Shunjiang Xu , Zuojun Geng
{"title":"Network pharmacology and experimental verification to explore the molecular mechanisms of Astragaloside IV against diabetic encephalopathy","authors":"Yong Wang , Qianqian Yang , Yanchao Lu , Lei Jiang , Rui Zhang , Siyu Jiang , Yuxuan Xu , Shunjiang Xu , Zuojun Geng","doi":"10.1016/j.bbrc.2025.151778","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Diabetic encephalopathy (DE) is a neurological complication caused by diabetes mellitus, and its underlying mechanism has not been fully clarified. Astragaloside IV (AS-IV) has been demonstrated to have treatment effects on multiple neurologic diseases. The objective of this research is to explore the role and underlying mechanism of AS-IV in the treatment of DE, utilizing the methods of network pharmacology and experimental validation.</div></div><div><h3>Methods</h3><div>Multiple public databases were used to search for the targets of AS-IV. Gene Expression Omnibus (GEO) dataset (GSE16135) was analyzed to identify differentially expressed genes (DEGs) in DE. The Venn diagram was employed to determine the intersecting genes. These genes were considered potential therapeutic targets of AS-IV in DE and were annotated using bioinformatics techniques. Subsequently, a protein-protein interaction (PPI) network was constructed utilizing Cytoscape software to identify the core targets of action. Additionally, molecular docking was conducted to validate the binding affinity of AS-IV to the main targets. Finally, we validated the predictive outcomes of network pharmacology in a DE rat model induced by intraperitoneal injection of streptozotocin (STZ).</div></div><div><h3>Results</h3><div>Through the application of network pharmacology and bioinformatics analyses, we discovered the top two hub targets (EGFR and JAK2). Subsequent molecular docking analysis showed that AS-IV was precisely located within the binding sites of both EGFR and JAK2, with binding energies of −8.18 kJ/mol and −10.94 kJ/mol, respectively. Behavioral experiments demonstrated that the treated rats showed improvements in cognitive impairment. Following AS-IV treatment, there was a significant reduction in amyloid-β (Aβ) plaques deposition and neurofibrillary tangles in the hippocampal tissue of DE rats. Furthermore, TUNEL staining and Western blot analyses demonstrated that AS-IV suppressed neuronal apoptosis and inhibited the activation of the EGFR/JAK2/STAT3 signaling pathway.</div></div><div><h3>Conclusion</h3><div>These results demonstrated that the AS-IV has the potential to improve cognitive impairment in DE rats by mitigating neuronal apoptosis through the EGFR/JAK2/STAT3 signaling pathway, which provides important implications for the treatment of DE.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"763 ","pages":"Article 151778"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25004929","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Diabetic encephalopathy (DE) is a neurological complication caused by diabetes mellitus, and its underlying mechanism has not been fully clarified. Astragaloside IV (AS-IV) has been demonstrated to have treatment effects on multiple neurologic diseases. The objective of this research is to explore the role and underlying mechanism of AS-IV in the treatment of DE, utilizing the methods of network pharmacology and experimental validation.
Methods
Multiple public databases were used to search for the targets of AS-IV. Gene Expression Omnibus (GEO) dataset (GSE16135) was analyzed to identify differentially expressed genes (DEGs) in DE. The Venn diagram was employed to determine the intersecting genes. These genes were considered potential therapeutic targets of AS-IV in DE and were annotated using bioinformatics techniques. Subsequently, a protein-protein interaction (PPI) network was constructed utilizing Cytoscape software to identify the core targets of action. Additionally, molecular docking was conducted to validate the binding affinity of AS-IV to the main targets. Finally, we validated the predictive outcomes of network pharmacology in a DE rat model induced by intraperitoneal injection of streptozotocin (STZ).
Results
Through the application of network pharmacology and bioinformatics analyses, we discovered the top two hub targets (EGFR and JAK2). Subsequent molecular docking analysis showed that AS-IV was precisely located within the binding sites of both EGFR and JAK2, with binding energies of −8.18 kJ/mol and −10.94 kJ/mol, respectively. Behavioral experiments demonstrated that the treated rats showed improvements in cognitive impairment. Following AS-IV treatment, there was a significant reduction in amyloid-β (Aβ) plaques deposition and neurofibrillary tangles in the hippocampal tissue of DE rats. Furthermore, TUNEL staining and Western blot analyses demonstrated that AS-IV suppressed neuronal apoptosis and inhibited the activation of the EGFR/JAK2/STAT3 signaling pathway.
Conclusion
These results demonstrated that the AS-IV has the potential to improve cognitive impairment in DE rats by mitigating neuronal apoptosis through the EGFR/JAK2/STAT3 signaling pathway, which provides important implications for the treatment of DE.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics