Khashbat Dashtseren , Bolorchimeg N. Tunnell , Enkhjargal Boldbaatar , Jargalan Sereenen , Marek Locmelis , Yueheng Yang , Ming Yang , Willis Hames , Nobuhiko Nakano , Tatsuro Adachi
{"title":"Genesis and geochronology of the Bayanteeg Li-mineralized pegmatite in the Idermeg terrane, central Mongolia","authors":"Khashbat Dashtseren , Bolorchimeg N. Tunnell , Enkhjargal Boldbaatar , Jargalan Sereenen , Marek Locmelis , Yueheng Yang , Ming Yang , Willis Hames , Nobuhiko Nakano , Tatsuro Adachi","doi":"10.1016/j.jseaes.2025.106615","DOIUrl":null,"url":null,"abstract":"<div><div>We present the first petrographic, lithogeochemical, and geochronological study of the Bayanteeg LCT pegmatite located in Idermeg terrane, central Mongolia, and interpret the findings within the geodynamic setting. The pegmatite extends over 140 m with a width of 1.3 m and unknown depth within Neoproterozoic gneiss. The pegmatite contains plagioclase, quartz, and lepidolite with minor K-feldspar, spodumene, muscovite, and topaz, and accessory amounts of cassiterite, amblygonite, columbite-tantalite, monazite, zircon, apatite, and fluorite. Locally, minor secondary quartz and lepidolite occur interstitially between plagioclase and quartz and along the edges of primary lepidolite, respectively, implying late-stage hydrothermal influence. Lithogeochemical data show that the pegmatite contains 0.3–1.12 wt% Li, 256–1285 ppm Cs, and 59–522 ppm Ta. Monazite U-Th-Pb geochronology yielded an age of 144.9 ± 2.8 Ma while cassiterite yielded a U-Pb age of 134.8 ± 1.4 Ma. Lepidolite yielded <sup>40</sup>Ar/<sup>39</sup>Ar plateau age of 131.25 ± 0.3 Ma. These age results fall during the geodynamic evolution of an intracontinental extension accompanied by the exhumation of metamorphic core complexes and extensive magmatism in the eastern Central Asian Orogenic Belt. These events occurred due to a combination of gravitational collapse resulting from lithospheric delamination and asthenospheric upwelling. The geodynamic setting during the pegmatite emplacement implies abnormally hot conditions, ruling out the possibility of anatectic origin. The pegmatite dike with elevated concentrations of Be, Ga, Rb, Nb, Sn, Cs, Ta, and Tl supports a granitic origin with a hidden parental granite at depth. The fact that the Idermeg terrane contains several LCT pegmatites implies an important exploration target for Li exploration.</div></div>","PeriodicalId":50253,"journal":{"name":"Journal of Asian Earth Sciences","volume":"287 ","pages":"Article 106615"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367912025001300","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present the first petrographic, lithogeochemical, and geochronological study of the Bayanteeg LCT pegmatite located in Idermeg terrane, central Mongolia, and interpret the findings within the geodynamic setting. The pegmatite extends over 140 m with a width of 1.3 m and unknown depth within Neoproterozoic gneiss. The pegmatite contains plagioclase, quartz, and lepidolite with minor K-feldspar, spodumene, muscovite, and topaz, and accessory amounts of cassiterite, amblygonite, columbite-tantalite, monazite, zircon, apatite, and fluorite. Locally, minor secondary quartz and lepidolite occur interstitially between plagioclase and quartz and along the edges of primary lepidolite, respectively, implying late-stage hydrothermal influence. Lithogeochemical data show that the pegmatite contains 0.3–1.12 wt% Li, 256–1285 ppm Cs, and 59–522 ppm Ta. Monazite U-Th-Pb geochronology yielded an age of 144.9 ± 2.8 Ma while cassiterite yielded a U-Pb age of 134.8 ± 1.4 Ma. Lepidolite yielded 40Ar/39Ar plateau age of 131.25 ± 0.3 Ma. These age results fall during the geodynamic evolution of an intracontinental extension accompanied by the exhumation of metamorphic core complexes and extensive magmatism in the eastern Central Asian Orogenic Belt. These events occurred due to a combination of gravitational collapse resulting from lithospheric delamination and asthenospheric upwelling. The geodynamic setting during the pegmatite emplacement implies abnormally hot conditions, ruling out the possibility of anatectic origin. The pegmatite dike with elevated concentrations of Be, Ga, Rb, Nb, Sn, Cs, Ta, and Tl supports a granitic origin with a hidden parental granite at depth. The fact that the Idermeg terrane contains several LCT pegmatites implies an important exploration target for Li exploration.
期刊介绍:
Journal of Asian Earth Sciences has an open access mirror journal Journal of Asian Earth Sciences: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Asian Earth Sciences is an international interdisciplinary journal devoted to all aspects of research related to the solid Earth Sciences of Asia. The Journal publishes high quality, peer-reviewed scientific papers on the regional geology, tectonics, geochemistry and geophysics of Asia. It will be devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be included. Papers must have international appeal and should present work of more than local significance.
The scope includes deep processes of the Asian continent and its adjacent oceans; seismology and earthquakes; orogeny, magmatism, metamorphism and volcanism; growth, deformation and destruction of the Asian crust; crust-mantle interaction; evolution of life (early life, biostratigraphy, biogeography and mass-extinction); fluids, fluxes and reservoirs of mineral and energy resources; surface processes (weathering, erosion, transport and deposition of sediments) and resulting geomorphology; and the response of the Earth to global climate change as viewed within the Asian continent and surrounding oceans.