Siyuan Cao , Ying Yuan , Wensong Zhang , Miao Zhang , Aihong Zhou , Ningbo Han , Miren Rong
{"title":"Assessment and remediation model of eco-geo-environmental conditions in arid limestone mining areas","authors":"Siyuan Cao , Ying Yuan , Wensong Zhang , Miao Zhang , Aihong Zhou , Ningbo Han , Miren Rong","doi":"10.1016/j.ecoleng.2025.107644","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the complexity and regional challenges of eco-geo-environmental assessment and remediation in arid limestone mining areas by proposing an innovative modular model that integrates the three-scale analytic hierarchy process, fuzzy mathematics, variable weight theory, literature review, and expert consultation. The model achieves precise classification of mining eco-geo-environmental quality through dynamic weight adjustment and multi-level fuzzy comprehensive evaluation, and designs corresponding remediation strategies based on assessment results. We have innovatively established a multi-level evaluation system comprising three primary indicators (mining ecological environment, geological environment, and disaster environment) and 21 sub-indicators, effectively resolving the adaptability limitations of traditional fixed-weight models. By determining initial weights through three-scale analytic hierarchy process and dynamically adjusting them using variable weight theory, the model significantly enhances evaluation accuracy and flexibility. The model's effectiveness was validated through a case study of the Tianjingshan open-pit limestone mining area in Zhongwei City, Ningxia. Results demonstrate high consistency between model assessments and field investigations, and the proposed integrated remediation strategy (“geological hazard elimination + soil reconstruction + vegetation restoration + artificial maintenance”) achieved a vegetation survival rate exceeding 96 %, representing approximately 20 % improvement over traditional soil replacement methods (simple topsoil covering). Through its modular design and hierarchical remediation approach, this model provides a replicable technical pathway for ecological restoration in arid limestone mines and other mining types, demonstrating significant scientific value and practical applicability.</div></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"217 ","pages":"Article 107644"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857425001326","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the complexity and regional challenges of eco-geo-environmental assessment and remediation in arid limestone mining areas by proposing an innovative modular model that integrates the three-scale analytic hierarchy process, fuzzy mathematics, variable weight theory, literature review, and expert consultation. The model achieves precise classification of mining eco-geo-environmental quality through dynamic weight adjustment and multi-level fuzzy comprehensive evaluation, and designs corresponding remediation strategies based on assessment results. We have innovatively established a multi-level evaluation system comprising three primary indicators (mining ecological environment, geological environment, and disaster environment) and 21 sub-indicators, effectively resolving the adaptability limitations of traditional fixed-weight models. By determining initial weights through three-scale analytic hierarchy process and dynamically adjusting them using variable weight theory, the model significantly enhances evaluation accuracy and flexibility. The model's effectiveness was validated through a case study of the Tianjingshan open-pit limestone mining area in Zhongwei City, Ningxia. Results demonstrate high consistency between model assessments and field investigations, and the proposed integrated remediation strategy (“geological hazard elimination + soil reconstruction + vegetation restoration + artificial maintenance”) achieved a vegetation survival rate exceeding 96 %, representing approximately 20 % improvement over traditional soil replacement methods (simple topsoil covering). Through its modular design and hierarchical remediation approach, this model provides a replicable technical pathway for ecological restoration in arid limestone mines and other mining types, demonstrating significant scientific value and practical applicability.
期刊介绍:
Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers.
Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.