Combining Bayesian Optimization, Singular Value Decomposition, and Machine Learning for Advanced Optical Design

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. R. Mahani*, Igor A. Nechepurenko, Thomas Flisgen and Andreas Wicht, 
{"title":"Combining Bayesian Optimization, Singular Value Decomposition, and Machine Learning for Advanced Optical Design","authors":"M. R. Mahani*,&nbsp;Igor A. Nechepurenko,&nbsp;Thomas Flisgen and Andreas Wicht,&nbsp;","doi":"10.1021/acsphotonics.4c0215710.1021/acsphotonics.4c02157","DOIUrl":null,"url":null,"abstract":"<p >The design and optimization of optical components, such as Bragg gratings, are critical for applications in telecommunications, sensing, and photonic circuits. To overcome the limitations of traditional design methods that rely heavily on computationally intensive simulations and large data sets, we propose an integrated methodology that significantly reduces these burdens while maintaining high accuracy in predicting optical response. First, we employ a Bayesian optimization technique to strategically select a limited yet informative number of simulation points from the design space, ensuring that each contributes maximally to the model’s performance. Second, we utilize singular value decomposition to effectively parametrize the entire reflectance spectrum into a reduced set of coefficients, allowing us to capture all significant spectral features without losing crucial information. Finally, we apply XGBoost, a robust machine learning algorithm, to predict the entire reflectance spectra from the reduced data set. The combination of Bayesian optimization for data selection, singular value decomposition (SVD) for full-spectrum fitting, and XGBoost for predictive modeling provides a powerful and generalizable framework for the design of optical components.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 4","pages":"1812–1821 1812–1821"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.4c02157","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The design and optimization of optical components, such as Bragg gratings, are critical for applications in telecommunications, sensing, and photonic circuits. To overcome the limitations of traditional design methods that rely heavily on computationally intensive simulations and large data sets, we propose an integrated methodology that significantly reduces these burdens while maintaining high accuracy in predicting optical response. First, we employ a Bayesian optimization technique to strategically select a limited yet informative number of simulation points from the design space, ensuring that each contributes maximally to the model’s performance. Second, we utilize singular value decomposition to effectively parametrize the entire reflectance spectrum into a reduced set of coefficients, allowing us to capture all significant spectral features without losing crucial information. Finally, we apply XGBoost, a robust machine learning algorithm, to predict the entire reflectance spectra from the reduced data set. The combination of Bayesian optimization for data selection, singular value decomposition (SVD) for full-spectrum fitting, and XGBoost for predictive modeling provides a powerful and generalizable framework for the design of optical components.

Abstract Image

结合贝叶斯优化、奇异值分解和机器学习的先进光学设计
光学元件的设计和优化,如布拉格光栅,在电信,传感和光子电路的应用是至关重要的。为了克服传统设计方法严重依赖计算密集型模拟和大数据集的局限性,我们提出了一种集成方法,可以显着减少这些负担,同时保持预测光学响应的高精度。首先,我们采用贝叶斯优化技术从设计空间中策略性地选择有限但信息量大的仿真点,确保每个点对模型的性能贡献最大。其次,我们利用奇异值分解有效地将整个反射光谱参数化为一组简化的系数,使我们能够在不丢失关键信息的情况下捕获所有重要的光谱特征。最后,我们应用了XGBoost,一种鲁棒的机器学习算法,从约简数据集中预测整个反射光谱。结合贝叶斯优化的数据选择、奇异值分解(SVD)的全光谱拟合和XGBoost的预测建模,为光学元件的设计提供了一个强大的通用框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信