An Economical and Efficient Helium Recovery System for Vibration-Sensitive Applications

IF 4.6 Q1 CHEMISTRY, ANALYTICAL
Zhiyuan Yin, Liya Bi, Yueqing Shi and Shaowei Li*, 
{"title":"An Economical and Efficient Helium Recovery System for Vibration-Sensitive Applications","authors":"Zhiyuan Yin,&nbsp;Liya Bi,&nbsp;Yueqing Shi and Shaowei Li*,&nbsp;","doi":"10.1021/acsmeasuresciau.4c0009710.1021/acsmeasuresciau.4c00097","DOIUrl":null,"url":null,"abstract":"<p >We present the design of a helium liquefaction system tailored to efficiently recover helium vapor from either an individual or a small cluster of vibration-sensitive cryogenic instruments. This design prioritizes a compact footprint, mitigating potential contamination sources such as gas bags and oil-lubricated compressors while maximizing the recovery rate by capturing both the boil-offs during normal operation and the refilling process of the bath cryostat. We demonstrated its performance by applying it to a commercial low-temperature scanning probe microscope. It features a &gt;94% recovery rate and induces negligible vibrational noise to the microscope. Due to its adaptability, affordability, compact size, and suitability for homemade setups, we foresee that our design can be utilized across a wide range of experimental measurements where liquid helium is used as the cryogen.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 2","pages":"226–233 226–233"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00097","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.4c00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present the design of a helium liquefaction system tailored to efficiently recover helium vapor from either an individual or a small cluster of vibration-sensitive cryogenic instruments. This design prioritizes a compact footprint, mitigating potential contamination sources such as gas bags and oil-lubricated compressors while maximizing the recovery rate by capturing both the boil-offs during normal operation and the refilling process of the bath cryostat. We demonstrated its performance by applying it to a commercial low-temperature scanning probe microscope. It features a >94% recovery rate and induces negligible vibrational noise to the microscope. Due to its adaptability, affordability, compact size, and suitability for homemade setups, we foresee that our design can be utilized across a wide range of experimental measurements where liquid helium is used as the cryogen.

一种用于振动敏感应用的经济高效的氦气回收系统
我们提出了一种氦液化系统的设计,该系统可以有效地从单个或一小群振动敏感的低温仪器中回收氦蒸气。这种设计优先考虑了紧凑的占地面积,减少了潜在的污染源,如气囊和油润滑压缩机,同时通过捕获正常运行期间的蒸发和浴槽低温恒温器的再填充过程,最大限度地提高了回收率。我们通过将其应用于商用低温扫描探针显微镜来证明其性能。它具有94%的回收率,并且对显微镜产生可忽略不计的振动噪声。由于它的适应性、可负担性、紧凑的尺寸和适合自制的设置,我们预见我们的设计可以用于广泛的实验测量,其中液氦被用作冷冻剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信