Gold Extraction from a Refractory Ore Using Calcium Hypochlorite at Moderate Pressure and Temperature before Cyanidation

IF 4.3 Q2 ENGINEERING, CHEMICAL
Yesica Raquel Quijada-Noriega*, Jesus Leobardo Valenzuela-Garcia*, Maria Mercedes Salazar-Campoy*, Guillermo Tiburcio-Munive, Victor Manuel Vazquez-Vazquez and Jose Refugio Parga-Torres, 
{"title":"Gold Extraction from a Refractory Ore Using Calcium Hypochlorite at Moderate Pressure and Temperature before Cyanidation","authors":"Yesica Raquel Quijada-Noriega*,&nbsp;Jesus Leobardo Valenzuela-Garcia*,&nbsp;Maria Mercedes Salazar-Campoy*,&nbsp;Guillermo Tiburcio-Munive,&nbsp;Victor Manuel Vazquez-Vazquez and Jose Refugio Parga-Torres,&nbsp;","doi":"10.1021/acsengineeringau.4c0003810.1021/acsengineeringau.4c00038","DOIUrl":null,"url":null,"abstract":"<p >Conventional leaching, the standard method for gold extraction, involves using a cyanide solution to dissolve gold from the ore. However, this process is often ineffective for refractory ores due to the presence of sulfide minerals. This study aims to improve the efficiency of gold extraction from refractory ores by introducing an oxidative pretreatment step using a calcium hypochlorite. This compound plays a crucial role in the process as it facilitates the oxidation of the sulfide minerals, mainly pyrite and quartz. The study also investigates how this approach affects oxidation at different temperatures and pressures inside a titanium reactor at 600 rpm. After the pretreatment, the mineral is in contact with a solution of sodium cyanide (1000 ppm) inside a stirred reactor (300 rpm) under atmospheric conditions. Some results obtained were more than 60% extraction of gold, but there were conditions under which gold extraction was less than 40%. The effect of the concentration of calcium hypochlorite 10 and 30 wt % was more significant compared with the temperature (25, 60, and 80 °C) and oxygen pressure (80 and 120 psi). This effect is due to a protective layer confirmed in the characterization using scanning electron microscopy (SEM-EDS) of the solid material previously leached.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"5 2","pages":"89–97 89–97"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.4c00038","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.4c00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional leaching, the standard method for gold extraction, involves using a cyanide solution to dissolve gold from the ore. However, this process is often ineffective for refractory ores due to the presence of sulfide minerals. This study aims to improve the efficiency of gold extraction from refractory ores by introducing an oxidative pretreatment step using a calcium hypochlorite. This compound plays a crucial role in the process as it facilitates the oxidation of the sulfide minerals, mainly pyrite and quartz. The study also investigates how this approach affects oxidation at different temperatures and pressures inside a titanium reactor at 600 rpm. After the pretreatment, the mineral is in contact with a solution of sodium cyanide (1000 ppm) inside a stirred reactor (300 rpm) under atmospheric conditions. Some results obtained were more than 60% extraction of gold, but there were conditions under which gold extraction was less than 40%. The effect of the concentration of calcium hypochlorite 10 and 30 wt % was more significant compared with the temperature (25, 60, and 80 °C) and oxygen pressure (80 and 120 psi). This effect is due to a protective layer confirmed in the characterization using scanning electron microscopy (SEM-EDS) of the solid material previously leached.

中压中温氰化前次氯酸钙萃取难选矿石中的金
传统的浸出法是提取金的标准方法,包括使用氰化物溶液从矿石中溶解金。然而,由于硫化物矿物的存在,这种方法对难熔矿石通常无效。本研究旨在通过引入次氯酸钙氧化预处理步骤,提高难选矿石中金的萃取效率。这种化合物在这个过程中起着至关重要的作用,因为它促进了硫化物矿物的氧化,主要是黄铁矿和石英。该研究还调查了这种方法如何在600转/分的钛反应器内不同的温度和压力下影响氧化。预处理后,在常压条件下,在搅拌反应器(300 rpm)内与氰化钠(1000ppm)溶液接触。有的结果金提取率超过60%,但也有金提取率低于40%的情况。与温度(25、60和80℃)和氧气压力(80和120 psi)相比,次氯酸钙浓度10和30 wt %的影响更为显著。这种影响是由于在先前浸出的固体材料的扫描电子显微镜(SEM-EDS)表征中证实了保护层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Engineering Au
ACS Engineering Au 化学工程技术-
自引率
0.00%
发文量
0
期刊介绍: )ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信