Williams Kweku Darkwah*, Alfred Bekoe Appiagyei, Samuel Nartey Kofie, Samuel Twum Akrofi, Daniel Adjah Anang, Godfred Kwesi Teye and Joshua Buer Puplampu*,
{"title":"Single Atom and Nanocluster Photocatalysts for Hydrogen Peroxide Synthesis under Visible Light","authors":"Williams Kweku Darkwah*, Alfred Bekoe Appiagyei, Samuel Nartey Kofie, Samuel Twum Akrofi, Daniel Adjah Anang, Godfred Kwesi Teye and Joshua Buer Puplampu*, ","doi":"10.1021/acsengineeringau.4c0001710.1021/acsengineeringau.4c00017","DOIUrl":null,"url":null,"abstract":"<p >The utilization of single-atom and nanocluster catalysis in various chemical processing industries and applications is well-established. Their monodispersity and well-defined arrangement facilitate their interrogation of the fundamental physical properties necessary for the significant application in structural composites, electrical devices and catalytic chemical reactions, particularly in high-temperature environments. Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) stands out as a highly effective oxidizing agent, distinguished by its environmentally benign nature, as it yields only water as a byproduct postredox process. Their versatility of H<sub>2</sub>O<sub>2</sub> spans diverse fields including pulp and paper bleaching, disinfection, detergent formulation, chemical synthesis, textile manufacturing and electronic production. This paper aims to elucidate recent advancements in engineering single-atoms and nanocluster-based photocatalysts, emphasizing their evolving structural modification strategies, catalytic mechanisms, synthesis methodologies and the mechanisms underlying H<sub>2</sub>O<sub>2</sub> production. Furthermore, this review underscores the potential future application of these catalysts in environmental treatment, particularly in the context of H<sub>2</sub>O<sub>2</sub> production. By focusing on the functionality and efficacy of employing SACs for H<sub>2</sub>O<sub>2</sub> production, this study aims to inform the development of future implementations to mitigate environmental impacts. Consequently, these materials emerge as promising candidates for environmentally friendly applications including refined fuel production and associated environmental treatment processes.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"5 2","pages":"70–88 70–88"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.4c00017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.4c00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of single-atom and nanocluster catalysis in various chemical processing industries and applications is well-established. Their monodispersity and well-defined arrangement facilitate their interrogation of the fundamental physical properties necessary for the significant application in structural composites, electrical devices and catalytic chemical reactions, particularly in high-temperature environments. Hydrogen peroxide (H2O2) stands out as a highly effective oxidizing agent, distinguished by its environmentally benign nature, as it yields only water as a byproduct postredox process. Their versatility of H2O2 spans diverse fields including pulp and paper bleaching, disinfection, detergent formulation, chemical synthesis, textile manufacturing and electronic production. This paper aims to elucidate recent advancements in engineering single-atoms and nanocluster-based photocatalysts, emphasizing their evolving structural modification strategies, catalytic mechanisms, synthesis methodologies and the mechanisms underlying H2O2 production. Furthermore, this review underscores the potential future application of these catalysts in environmental treatment, particularly in the context of H2O2 production. By focusing on the functionality and efficacy of employing SACs for H2O2 production, this study aims to inform the development of future implementations to mitigate environmental impacts. Consequently, these materials emerge as promising candidates for environmentally friendly applications including refined fuel production and associated environmental treatment processes.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)