Fei Gao, Dandan Gao, Chen Ning, Shuguang Liu, Yakov Kuzyakov, Andy Smith, Wende Yan
{"title":"Tree diversity affects temperature sensitivity of soil organic matter decomposition in rhizosphere","authors":"Fei Gao, Dandan Gao, Chen Ning, Shuguang Liu, Yakov Kuzyakov, Andy Smith, Wende Yan","doi":"10.1007/s11104-025-07410-w","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Tree diversity strongly regulates organic matter inputs by rhizodeposition for microorganisms and microbial communities, impacting soil carbon (C) dynamics and stability. Because of much larger organic C availability in the rhizosphere, it can respond differently to tree diversity compared to bulk soil. To explore soil C stability under global warming, we assessed the temperature sensitivity (Q<sub>10</sub>) of organic matter decomposition in rhizosphere and bulk soil depending on tree diversity.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Q<sub>10</sub> of organic matter decomposition in rhizosphere and bulk soil in a subtropical forest were examined using short-term incubation under controlled conditions depending on tree diversity. Fine root traits and soil C and N availability were evaluated as related to microbial properties.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>With increasing tree diversity, Q<sub>10</sub> remained stable in the rhizosphere but decreased in the bulk soil. While greater tree diversity increased fine root biomass, soil C and N availability, microbial K/r strategy ratios in rhizosphere and bulk soil shifter towards the r strategists, with a reduced bacterial K/r strategy ratio. However, microbial gene copy numbers and Shannon diversity remained stable. Partial correlation and multiple regression analysis revealed that rhizosphere Q<sub>10</sub> remained stable because of C excess and larger microbial abundance. The Q<sub>10</sub> reduction in bulk soil correlated with increased C availability and a shift in microbial community towards a lower K/r strategy ratio.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The Q<sub>10</sub> decoupling between rhizosphere and bulk soil highlights a trade-off, where increasing tree diversity accelerates organic matter decomposition in rhizosphere to sustain nutrient supply, while maintaining bulk C pool stability under global warming.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-025-07410-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims
Tree diversity strongly regulates organic matter inputs by rhizodeposition for microorganisms and microbial communities, impacting soil carbon (C) dynamics and stability. Because of much larger organic C availability in the rhizosphere, it can respond differently to tree diversity compared to bulk soil. To explore soil C stability under global warming, we assessed the temperature sensitivity (Q10) of organic matter decomposition in rhizosphere and bulk soil depending on tree diversity.
Methods
Q10 of organic matter decomposition in rhizosphere and bulk soil in a subtropical forest were examined using short-term incubation under controlled conditions depending on tree diversity. Fine root traits and soil C and N availability were evaluated as related to microbial properties.
Results
With increasing tree diversity, Q10 remained stable in the rhizosphere but decreased in the bulk soil. While greater tree diversity increased fine root biomass, soil C and N availability, microbial K/r strategy ratios in rhizosphere and bulk soil shifter towards the r strategists, with a reduced bacterial K/r strategy ratio. However, microbial gene copy numbers and Shannon diversity remained stable. Partial correlation and multiple regression analysis revealed that rhizosphere Q10 remained stable because of C excess and larger microbial abundance. The Q10 reduction in bulk soil correlated with increased C availability and a shift in microbial community towards a lower K/r strategy ratio.
Conclusion
The Q10 decoupling between rhizosphere and bulk soil highlights a trade-off, where increasing tree diversity accelerates organic matter decomposition in rhizosphere to sustain nutrient supply, while maintaining bulk C pool stability under global warming.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.