Hye Jin Nam, Jun Hee Han, Jihyeon Yu, Chang Sik Cho, Dongha Kim, Young Eun Kim, Min Ji Kim, Jeong Hun Kim, Dong Hyun Jo, Sangsu Bae
{"title":"Autophagy induction enhances homologous recombination-associated CRISPR–Cas9 gene editing","authors":"Hye Jin Nam, Jun Hee Han, Jihyeon Yu, Chang Sik Cho, Dongha Kim, Young Eun Kim, Min Ji Kim, Jeong Hun Kim, Dong Hyun Jo, Sangsu Bae","doi":"10.1093/nar/gkaf258","DOIUrl":null,"url":null,"abstract":"CRISPR (clustered regularly interspaced short palindromic repeats)–Cas9 (CRISPR-associated protein 9)-based gene editing via homologous recombination (HR) enables precise gene correction and insertion. However, its low efficiency poses a challenge due to the predominance of nonhomologous end-joining during DNA repair processes. Although numerous efforts have been made to boost HR efficiency, there remains a critical need to devise a novel method that can be universally applied across cell types and in vivo animals, which could ultimately facilitate therapeutic treatments. This study demonstrated that autophagy induction using different protocols, including nutrient deprivation or chemical treatment, significantly improved HR-associated gene editing at diverse genomic loci in mammalian cells. Notably, interacting cofactor proteins that bind to Cas9 under the autophagic condition have been identified, and autophagy induction could also enhance in vivo HR-associated gene editing in mice. These findings pave the way for effective gene correction or insertion for in vivo therapeutic treatments.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"16 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf258","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)–Cas9 (CRISPR-associated protein 9)-based gene editing via homologous recombination (HR) enables precise gene correction and insertion. However, its low efficiency poses a challenge due to the predominance of nonhomologous end-joining during DNA repair processes. Although numerous efforts have been made to boost HR efficiency, there remains a critical need to devise a novel method that can be universally applied across cell types and in vivo animals, which could ultimately facilitate therapeutic treatments. This study demonstrated that autophagy induction using different protocols, including nutrient deprivation or chemical treatment, significantly improved HR-associated gene editing at diverse genomic loci in mammalian cells. Notably, interacting cofactor proteins that bind to Cas9 under the autophagic condition have been identified, and autophagy induction could also enhance in vivo HR-associated gene editing in mice. These findings pave the way for effective gene correction or insertion for in vivo therapeutic treatments.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.