Wen-Bing Jin, Leyi Xiao, Mingeum Jeong, Seong-Ji Han, Wen Zhang, Hiroshi Yano, Huiqing Shi, Mohammad Arifuzzaman, Mengze Lyu, Daoming Wang, Yuelin Angelina Tang, Shanshan Qiao, Xiaoyu Yang, He S. Yang, Jingyuan Fu, Gregory F. Sonnenberg, Nicholas Collins, David Artis, Chun-Jun Guo
{"title":"Microbiota-derived bile acids antagonize the host androgen receptor and drive anti-tumor immunity","authors":"Wen-Bing Jin, Leyi Xiao, Mingeum Jeong, Seong-Ji Han, Wen Zhang, Hiroshi Yano, Huiqing Shi, Mohammad Arifuzzaman, Mengze Lyu, Daoming Wang, Yuelin Angelina Tang, Shanshan Qiao, Xiaoyu Yang, He S. Yang, Jingyuan Fu, Gregory F. Sonnenberg, Nicholas Collins, David Artis, Chun-Jun Guo","doi":"10.1016/j.cell.2025.02.029","DOIUrl":null,"url":null,"abstract":"Microbiota-derived bile acids (BAs) are associated with host biology/disease, yet their causal effects remain largely undefined. Herein, we speculate that characterizing previously undefined microbiota-derived BAs would uncover previously unknown BA-sensing receptors and their biological functions. We integrated BA metabolomics and microbial genetics to functionally profile >200 putative microbiota BA metabolic genes. We identified 56 less-characterized BAs, many of which are detected in humans/mammals. Notably, a subset of these BAs are potent antagonists of the human androgen receptor (hAR). They inhibit AR-related gene expression and are human-relevant. As a proof-of-principle, we demonstrate that one of these BAs suppresses tumor progression and potentiates the efficacy of anti-PD-1 treatment in an AR-dependent manner. Our findings show that an approach combining bioinformatics, BA metabolomics, and microbial genetics can expand our knowledge of the microbiota metabolic potential and reveal an unexpected microbiota BA-AR interaction and its role in regulating host biology.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"15 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.02.029","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbiota-derived bile acids (BAs) are associated with host biology/disease, yet their causal effects remain largely undefined. Herein, we speculate that characterizing previously undefined microbiota-derived BAs would uncover previously unknown BA-sensing receptors and their biological functions. We integrated BA metabolomics and microbial genetics to functionally profile >200 putative microbiota BA metabolic genes. We identified 56 less-characterized BAs, many of which are detected in humans/mammals. Notably, a subset of these BAs are potent antagonists of the human androgen receptor (hAR). They inhibit AR-related gene expression and are human-relevant. As a proof-of-principle, we demonstrate that one of these BAs suppresses tumor progression and potentiates the efficacy of anti-PD-1 treatment in an AR-dependent manner. Our findings show that an approach combining bioinformatics, BA metabolomics, and microbial genetics can expand our knowledge of the microbiota metabolic potential and reveal an unexpected microbiota BA-AR interaction and its role in regulating host biology.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.