Tracing the Earliest Stages of Star and Cluster Formation in 19 Nearby Galaxies with PHANGS-JWST and HST: Compact 3.3 μm Polycyclic Aromatic Hydrocarbon Emitters and Their Relation to the Optical Census of Star Clusters

M. Jimena Rodríguez, Janice C. Lee, Remy Indebetouw, B. C. Whitmore, Daniel Maschmann, Thomas G. Williams, Rupali Chandar, A. T. Barnes, Oleg Y. Gnedin, Karin M. Sandstrom, Erik Rosolowsky, Adam K. Leroy, David A. Thilker, Hwihyun Kim, Jiayi Sun, Ralf S. Klessen, Brent Groves, Aida Wofford, Médéric Boquien, Daniel A. Dale, Leonardo Úbeda, Kirsten L. Larson, Kathryn Grasha, Kelsey E. Johnson, Rebecca C. Levy, Frank Bigiel, Hamid Hassani and Sumit K. Sarbadhicary
{"title":"Tracing the Earliest Stages of Star and Cluster Formation in 19 Nearby Galaxies with PHANGS-JWST and HST: Compact 3.3 μm Polycyclic Aromatic Hydrocarbon Emitters and Their Relation to the Optical Census of Star Clusters","authors":"M. Jimena Rodríguez, Janice C. Lee, Remy Indebetouw, B. C. Whitmore, Daniel Maschmann, Thomas G. Williams, Rupali Chandar, A. T. Barnes, Oleg Y. Gnedin, Karin M. Sandstrom, Erik Rosolowsky, Adam K. Leroy, David A. Thilker, Hwihyun Kim, Jiayi Sun, Ralf S. Klessen, Brent Groves, Aida Wofford, Médéric Boquien, Daniel A. Dale, Leonardo Úbeda, Kirsten L. Larson, Kathryn Grasha, Kelsey E. Johnson, Rebecca C. Levy, Frank Bigiel, Hamid Hassani and Sumit K. Sarbadhicary","doi":"10.3847/1538-4357/adbb69","DOIUrl":null,"url":null,"abstract":"The earliest stages of star and cluster formation are hidden within dense cocoons of gas and dust, limiting their detection at optical wavelengths. With the unprecedented infrared capabilities of JWST, we can now observe dust-enshrouded star formation with ∼10 pc resolution out to ∼20 Mpc. Early findings from PHANGS-JWST suggest that 3.3 μm polycyclic aromatic hydrocarbon (PAH) emission can identify star clusters in their dust-embedded phases. Here, we extend this analysis to 19 galaxies from the PHANGS-JWST Cycle 1 Treasury survey, providing the first characterization of compact sources exhibiting 3.3 μm PAH emission across a diverse sample of nearby star-forming galaxies. We establish a selection criteria based on a median color threshold of F300M − F335M = 0.67 at F335M = 20 and identify 1816 sources. These sources are predominantly located in dust lanes, spiral arms, rings, and galaxy centers, with ∼87% showing concentration indices (CIs) similar to optically detected star clusters. Comparison with the PHANGS-HST catalogs suggests that PAH emission fades within ∼3 Myr. The Hα equivalent width of PAH emitters is 1–2.8 times higher than that of young PHANGS-HST clusters, providing evidence that PAH emitters are on average younger. Analysis of the bright portions of luminosity functions (which should not suffer from incompleteness) shows that young dusty clusters may increase the number of optically visible ≤3 Myr old clusters in PHANGS-HST by a factor between ∼1.8× and 8.5×.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adbb69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The earliest stages of star and cluster formation are hidden within dense cocoons of gas and dust, limiting their detection at optical wavelengths. With the unprecedented infrared capabilities of JWST, we can now observe dust-enshrouded star formation with ∼10 pc resolution out to ∼20 Mpc. Early findings from PHANGS-JWST suggest that 3.3 μm polycyclic aromatic hydrocarbon (PAH) emission can identify star clusters in their dust-embedded phases. Here, we extend this analysis to 19 galaxies from the PHANGS-JWST Cycle 1 Treasury survey, providing the first characterization of compact sources exhibiting 3.3 μm PAH emission across a diverse sample of nearby star-forming galaxies. We establish a selection criteria based on a median color threshold of F300M − F335M = 0.67 at F335M = 20 and identify 1816 sources. These sources are predominantly located in dust lanes, spiral arms, rings, and galaxy centers, with ∼87% showing concentration indices (CIs) similar to optically detected star clusters. Comparison with the PHANGS-HST catalogs suggests that PAH emission fades within ∼3 Myr. The Hα equivalent width of PAH emitters is 1–2.8 times higher than that of young PHANGS-HST clusters, providing evidence that PAH emitters are on average younger. Analysis of the bright portions of luminosity functions (which should not suffer from incompleteness) shows that young dusty clusters may increase the number of optically visible ≤3 Myr old clusters in PHANGS-HST by a factor between ∼1.8× and 8.5×.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信