{"title":"Reviving ether-based electrolytes for sodium-ion batteries","authors":"Fangyuan Cheng, Jun Hu, Wen Zhang, Peng Yu, Xueliang Sun, Jian Peng, Baiyu Guo","doi":"10.1039/d5ee00725a","DOIUrl":null,"url":null,"abstract":"The development of ether-based electrolytes has significant challenges, primarily caused by the irreversible co-intercalation of ether and Li+ into commercial graphite, which excluded ether from use in commercial lithium-ion batteries (LIBs). However, the explosive development of sodium-ion batteries (SIBs) in recent years has driven a revival in ether-based electrolytes, due to their superior rate capability and low temperature suitability. In this review, we trace the evolution of ether-based electrolytes, from rise and subsequent decline to their current revival. We provide comprehensive analysis of the compatibility mechanisms between ether-based electrolytes and both anodes and cathodes in SIBs. Additively, we assess the feasibility of commercializing ether-based electrolytes, considering key factors such as electrochemical performance, safety and cost. Finally, we highlight critical challenges that must be overcome, from fundamental research to large-scale commercialization, and provide theoretical guidance for future development and innovation of ether-based electrolytes.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"59 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ee00725a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of ether-based electrolytes has significant challenges, primarily caused by the irreversible co-intercalation of ether and Li+ into commercial graphite, which excluded ether from use in commercial lithium-ion batteries (LIBs). However, the explosive development of sodium-ion batteries (SIBs) in recent years has driven a revival in ether-based electrolytes, due to their superior rate capability and low temperature suitability. In this review, we trace the evolution of ether-based electrolytes, from rise and subsequent decline to their current revival. We provide comprehensive analysis of the compatibility mechanisms between ether-based electrolytes and both anodes and cathodes in SIBs. Additively, we assess the feasibility of commercializing ether-based electrolytes, considering key factors such as electrochemical performance, safety and cost. Finally, we highlight critical challenges that must be overcome, from fundamental research to large-scale commercialization, and provide theoretical guidance for future development and innovation of ether-based electrolytes.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).