Tailoring Oxygen Vacancies with Atomically Dispersed Cu Sites for Stable and Efficient Photothermal CO2 Conversion

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xueying Wan, Yilin Zhao, Yifan Li, Jun Ma, Yadi Gu, Caiyi Liu, Yan Luo, Guang Yang, Yi Cui, Dong Liu, Yujie Xiong
{"title":"Tailoring Oxygen Vacancies with Atomically Dispersed Cu Sites for Stable and Efficient Photothermal CO2 Conversion","authors":"Xueying Wan,&nbsp;Yilin Zhao,&nbsp;Yifan Li,&nbsp;Jun Ma,&nbsp;Yadi Gu,&nbsp;Caiyi Liu,&nbsp;Yan Luo,&nbsp;Guang Yang,&nbsp;Yi Cui,&nbsp;Dong Liu,&nbsp;Yujie Xiong","doi":"10.1002/anie.202505244","DOIUrl":null,"url":null,"abstract":"<p>Photothermal catalysis under mild conditions represents a promising and sustainable approach for CO<sub>2</sub> conversion into high-value chemicals, thereby enabling efficient carbon recycling. However, precise manipulation of active sites and their coordination environments at the atomic level to enhance catalyst performance still remains a challenge. Here, we present a single-atom doping strategy for oxygen vacancy engineering to facilitate efficient CO<sub>2</sub> conversion. Specifically, an In<sub>2</sub>O<sub>3</sub>-based catalyst with abundant oxygen vacancies induced by homogeneously dispersed Cu single atoms is constructed, exhibiting a competent CO<sub>2</sub> reduction performance in photothermal reverse water-gas shift reaction. The optimal Cu-In<sub>2</sub>O<sub>3</sub> catalyst achieves a CO yield rate of 46.17 mol g<sub>Cu</sub><sup>−1</sup> h<sup>−1</sup> with near-unity selectivity (&gt;99%) and demonstrates stability over 450 h under 3 W cm<sup>−2</sup> full-spectrum light illumination. Comprehensive spectroscopic characterization and computational simulations elucidate that the Cu single atoms synergistically interact with oxygen vacancies to promote H<sub>2</sub> dissociation and CO<sub>2</sub> activation under photoexcitation. This work provides insights into the design of photothermal catalysts, emphasizing the transformative potential of atomic-site engineering for efficient CO<sub>2</sub> conversion and sustainable energy technologies.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 30","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505244","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photothermal catalysis under mild conditions represents a promising and sustainable approach for CO2 conversion into high-value chemicals, thereby enabling efficient carbon recycling. However, precise manipulation of active sites and their coordination environments at the atomic level to enhance catalyst performance still remains a challenge. Here, we present a single-atom doping strategy for oxygen vacancy engineering to facilitate efficient CO2 conversion. Specifically, an In2O3-based catalyst with abundant oxygen vacancies induced by homogeneously dispersed Cu single atoms is constructed, exhibiting a competent CO2 reduction performance in photothermal reverse water-gas shift reaction. The optimal Cu-In2O3 catalyst achieves a CO yield rate of 46.17 mol gCu−1 h−1 with near-unity selectivity (>99%) and demonstrates stability over 450 h under 3 W cm−2 full-spectrum light illumination. Comprehensive spectroscopic characterization and computational simulations elucidate that the Cu single atoms synergistically interact with oxygen vacancies to promote H2 dissociation and CO2 activation under photoexcitation. This work provides insights into the design of photothermal catalysts, emphasizing the transformative potential of atomic-site engineering for efficient CO2 conversion and sustainable energy technologies.

Abstract Image

用原子分散的Cu位点剪裁氧空位,用于稳定和高效的光热CO2转化
温和条件下的光热催化是将二氧化碳转化为高价值化学品的一种有前途和可持续的方法,从而实现有效的碳回收。然而,在原子水平上精确操纵活性位点及其配位环境以提高催化剂性能仍然具有挑战性。在这里,我们提出了一种用于氧空位工程的单原子掺杂策略,以促进有效的CO2转化。具体而言,构建了一种由均匀分散的Cu单原子诱导出丰富氧空位的in2o3基催化剂,在光热逆水气转换反应中表现出良好的CO2还原性能。最佳Cu-In2O3催化剂的CO产率为46.17 mol·gCu-1·h-1,选择性接近一致(>99%),在3w·cm-2全光谱光照下具有450小时的稳定性。综合光谱表征和计算模拟表明,在光激发下,Cu单原子与氧空位协同作用,促进H2解离和CO2活化。这项工作为光热催化剂的设计提供了见解,强调了原子位点工程在高效二氧化碳转化和可持续能源技术方面的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信