{"title":"Illuminating the Path of Rearrangement: Visible Light-Driven Pd-Catalyzed Substituted Olefins Synthesis","authors":"jenifer Sharshonov, Valentin Duchemann, Yuqian Sun, Christine Tran, Philippe Belmont, Abdallah HAMZE, Diana Lamaa, Etienne BRACHET","doi":"10.1002/adsc.202500161","DOIUrl":null,"url":null,"abstract":"Pd-catalyzed reactions are among the most straightforward and efficient methods to proficiently build Csp2-Csp2 bonds. Nevertheless, thermal activation remains mandatory in most cases, which may decrease the compatibility with sensitive functional groups. In this context, improvements of conventional strategies must be an important source of research in order to enhance the applicability of such methods for building complex scaffolds. In this work, we contribute to this aim by implying visible-light as the sole energy source in a Pd-catalyzed rearrangement reaction involving N-tosylhydrazones and aryl halides. These mild reaction conditions efficiently allow oxidative addition, aryl migration and β-hydride elimination at room temperature, allowing the construction of various 1,1’ disubstituted olefins.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"23 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202500161","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Pd-catalyzed reactions are among the most straightforward and efficient methods to proficiently build Csp2-Csp2 bonds. Nevertheless, thermal activation remains mandatory in most cases, which may decrease the compatibility with sensitive functional groups. In this context, improvements of conventional strategies must be an important source of research in order to enhance the applicability of such methods for building complex scaffolds. In this work, we contribute to this aim by implying visible-light as the sole energy source in a Pd-catalyzed rearrangement reaction involving N-tosylhydrazones and aryl halides. These mild reaction conditions efficiently allow oxidative addition, aryl migration and β-hydride elimination at room temperature, allowing the construction of various 1,1’ disubstituted olefins.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.