Alessandra Alberti, Salvatore Valastro, Elisa Nonni, Fabio Matteocci, Lucio Cinà, Aldo Di Carlo, Antonino La Magna
{"title":"Resilience to Demixing and Phase Segregation in Perovskite Solar Cells under Light–Dark Cycles and Temperature","authors":"Alessandra Alberti, Salvatore Valastro, Elisa Nonni, Fabio Matteocci, Lucio Cinà, Aldo Di Carlo, Antonino La Magna","doi":"10.1021/acsenergylett.5c00232","DOIUrl":null,"url":null,"abstract":"Light soaking impacts perovskite solar cells, causing cation rotation, octahedral distortion, and weakened hydrogen bonding. Using a unique <i>in-operando</i> setup for ISOS protocols, we monitor structural, optical, and electrical responses under prolonged light exposure, revealing progressive average changes without sample reloading uncertainties. Over 20 h intervals, light-induced lattice deformation causes progressive local demixing, partially reversible in dark, and residual amorphization that hinders electrical recovery. Lattice expansion and bandgap red-shift indicate increasing iodide local enrichment, while a bandgap blue-shift occurs under heating. FA-MA-Cs-perovskites resist to this ionic demixing more than FA-Cs. Sunlight is the primary trigger for that, surpassing the effects of bias or induced heating. Stress tests at 65 °C drive both formulations from demixing to irreversible phase segregation, with FA-Cs devices showing greater structural and electrical resilience than FA-MA-Cs. Since a demixing–remixing interplay governs the device operation, we recommend tracking it using <i>in-operando</i> protocols over 24–48 h of unaccelerated sunlight–dark testing.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"5 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00232","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Light soaking impacts perovskite solar cells, causing cation rotation, octahedral distortion, and weakened hydrogen bonding. Using a unique in-operando setup for ISOS protocols, we monitor structural, optical, and electrical responses under prolonged light exposure, revealing progressive average changes without sample reloading uncertainties. Over 20 h intervals, light-induced lattice deformation causes progressive local demixing, partially reversible in dark, and residual amorphization that hinders electrical recovery. Lattice expansion and bandgap red-shift indicate increasing iodide local enrichment, while a bandgap blue-shift occurs under heating. FA-MA-Cs-perovskites resist to this ionic demixing more than FA-Cs. Sunlight is the primary trigger for that, surpassing the effects of bias or induced heating. Stress tests at 65 °C drive both formulations from demixing to irreversible phase segregation, with FA-Cs devices showing greater structural and electrical resilience than FA-MA-Cs. Since a demixing–remixing interplay governs the device operation, we recommend tracking it using in-operando protocols over 24–48 h of unaccelerated sunlight–dark testing.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.