Jun-Hwe Cha, Inseong Lee, Seol Won Yun, Woonggi Hong, Hyo Hoon Byeon, Jungyeop Oh, Seohak Park, Sung-Yool Choi
{"title":"Selective and local flash-annealing for improvement in the contact characteristics of MoS2 transistors","authors":"Jun-Hwe Cha, Inseong Lee, Seol Won Yun, Woonggi Hong, Hyo Hoon Byeon, Jungyeop Oh, Seohak Park, Sung-Yool Choi","doi":"10.1039/d5nr00114e","DOIUrl":null,"url":null,"abstract":"The fields of nanoscience and nanotechnology have recently progressed toward the sub-10 nm scale, which is a technology node that requires new materials for various applications owing to the quantum mechanical limitations of silicon. Accordingly, two-dimensional transition-metal dichalcogenides (2D TMDCs) are widely being studied due to their great potential for low-power electronics. Despite these striking advantages, 2D TMDC field-effect transistors have poor mobility due to their high contact resistance and interfacial scattering of defects. To mitigate non-ideal electrical contacts, thermal annealing processes are performed in most cases; however, such processes require expensive and bulky equipment. In this study, a facile approach is proposed for ambient-air and selective annealing, which is performed on a wafer scale between MoS<small><sub>2</sub></small> and electrodes through flash lamp irradiation. Flash lamp irradiation promotes excellent photothermal annealing, thus increasing the electrode temperature to >640 K, significantly enhancing the device performance. It was confirmed that the primary cause for the improvement of contact characteristics is the hybridization between Au and MoS<small><sub>2</sub></small> and the generation of sulfur vacancies in MoS<small><sub>2</sub></small>, supported by surface element analysis and optical measurements.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"26 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr00114e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The fields of nanoscience and nanotechnology have recently progressed toward the sub-10 nm scale, which is a technology node that requires new materials for various applications owing to the quantum mechanical limitations of silicon. Accordingly, two-dimensional transition-metal dichalcogenides (2D TMDCs) are widely being studied due to their great potential for low-power electronics. Despite these striking advantages, 2D TMDC field-effect transistors have poor mobility due to their high contact resistance and interfacial scattering of defects. To mitigate non-ideal electrical contacts, thermal annealing processes are performed in most cases; however, such processes require expensive and bulky equipment. In this study, a facile approach is proposed for ambient-air and selective annealing, which is performed on a wafer scale between MoS2 and electrodes through flash lamp irradiation. Flash lamp irradiation promotes excellent photothermal annealing, thus increasing the electrode temperature to >640 K, significantly enhancing the device performance. It was confirmed that the primary cause for the improvement of contact characteristics is the hybridization between Au and MoS2 and the generation of sulfur vacancies in MoS2, supported by surface element analysis and optical measurements.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.