Optical Tweezer-Driven Mechanotransduction: Probing pN-Scale Forces and Calcium-Mediated Redox Signaling in Single Endothelial Cells

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-04-15 DOI:10.1021/acsnano.5c03122
Yu-Yao Li, Haodong Li, Yawen Zheng, Da-Di Xu, Liu Liu, Ao Liu, Tianning Li, Dai-Wen Pang, Hong-Wu Tang
{"title":"Optical Tweezer-Driven Mechanotransduction: Probing pN-Scale Forces and Calcium-Mediated Redox Signaling in Single Endothelial Cells","authors":"Yu-Yao Li, Haodong Li, Yawen Zheng, Da-Di Xu, Liu Liu, Ao Liu, Tianning Li, Dai-Wen Pang, Hong-Wu Tang","doi":"10.1021/acsnano.5c03122","DOIUrl":null,"url":null,"abstract":"Endothelial cells (ECs) regulate vascular function by converting mechanical forces into biochemical signals; however, the molecular mechanisms of pN-scale mechanotransduction remain elusive. Here, we develop an optical tweezer-integrated confocal microscopy system that allows precise, noninvasive manipulation of the cell membrane localization with mechanical stimuli within the 0–100 pN range while monitoring Ca<sup>2+</sup>-mediated NO/ROS redox signaling in situ in single ECs under varying force parameters. We show that pN-scale mechanical stimulation regulates extracellular Ca<sup>2+</sup> influx, triggering downstream production of NO and ROS, which subsequently affects intracellular redox homeostasis. Key mechanosensitive ion channels (e.g., Piezo1 and TRPV4) and cytoskeletal components (e.g., F-actin) facilitate force-induced redox signaling. We further delineate the roles of membrane tension-dominant versus hybrid tension-tether models in mechanotransduction, revealing their differential engagement in force transmission pathways. This mechanistic framework establishes direct connections between pN-scale mechanical input characteristics and redox-regulated vascular homeostasis.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"17 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c03122","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Endothelial cells (ECs) regulate vascular function by converting mechanical forces into biochemical signals; however, the molecular mechanisms of pN-scale mechanotransduction remain elusive. Here, we develop an optical tweezer-integrated confocal microscopy system that allows precise, noninvasive manipulation of the cell membrane localization with mechanical stimuli within the 0–100 pN range while monitoring Ca2+-mediated NO/ROS redox signaling in situ in single ECs under varying force parameters. We show that pN-scale mechanical stimulation regulates extracellular Ca2+ influx, triggering downstream production of NO and ROS, which subsequently affects intracellular redox homeostasis. Key mechanosensitive ion channels (e.g., Piezo1 and TRPV4) and cytoskeletal components (e.g., F-actin) facilitate force-induced redox signaling. We further delineate the roles of membrane tension-dominant versus hybrid tension-tether models in mechanotransduction, revealing their differential engagement in force transmission pathways. This mechanistic framework establishes direct connections between pN-scale mechanical input characteristics and redox-regulated vascular homeostasis.

Abstract Image

光镊驱动的机械转导:探测单个内皮细胞的pn尺度力和钙介导的氧化还原信号
内皮细胞(ECs)通过将机械力转化为生化信号来调节血管功能;然而,pn尺度机械转导的分子机制仍然难以捉摸。在这里,我们开发了一种光学镊子集成共聚焦显微镜系统,可以在0-100 pN范围内通过机械刺激精确,无创地操作细胞膜定位,同时在不同的力参数下监测Ca2+介导的NO/ROS氧化还原信号在单个ec中的原位。我们发现pn级的机械刺激调节细胞外Ca2+内流,触发下游NO和ROS的产生,进而影响细胞内氧化还原稳态。关键的机械敏感离子通道(如Piezo1和TRPV4)和细胞骨架成分(如F-actin)促进力诱导的氧化还原信号传导。我们进一步描述了膜张力主导模型和混合张力系索模型在机械转导中的作用,揭示了它们在力传递途径中的不同参与。这一机制框架建立了pn尺度机械输入特性与氧化还原调节的血管稳态之间的直接联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信