Cheng-Chu Chung, Ruipeng Li, Gabriel M. Veith, Honghu Zhang, Fernando Camino, Ming Lu, Nikhil Tiwale, Sheng Zhang, Kevin G. Yager, Yu-chen Karen Chen-Wiegart
{"title":"Accelerating Discovery of Solid-State Thin-Film Metal Dealloying for 3D Nanoarchitecture Materials Design through Laser Thermal Gradient Treatment","authors":"Cheng-Chu Chung, Ruipeng Li, Gabriel M. Veith, Honghu Zhang, Fernando Camino, Ming Lu, Nikhil Tiwale, Sheng Zhang, Kevin G. Yager, Yu-chen Karen Chen-Wiegart","doi":"10.1002/smll.202501739","DOIUrl":null,"url":null,"abstract":"<p>Thin-film solid-state metal dealloying (thin-film SSMD) is a promising method for fabricating nanostructures with controlled morphology and efficiency, offering advantages over conventional bulk materials processing methods for integration into practical applications. Although machine learning (ML) has facilitated the design of dealloying systems, the selection of key thermal treatment parameters for nanostructure formation remains largely unknown and dependent on experimental trial and error. To overcome this challenge, a workflow enabling high-throughput characterization of thermal treatment parameters is demonstrated using a laser-based thermal treatment to create temperature gradients on single thin-film samples of Nb-Al/Sc and Nb-Al/Cu. This continuous thermal space enables observation of dealloying transitions and the resulting nanostructures of interest. Through synchrotron X-ray multimodal and high-throughput characterization, critical transitions and nanostructures can be rapidly captured and subsequently verified using electron microscopy. The key temperatures driving chemical reactions and morphological evolutions are clearly identified. While the oxidation may influence nanostructure formation during thin-film treatment, the dealloying process at the dealloying front involves interactions solely between the dealloying elements, highlighting the availability and viability of the selected systems. This approach enables efficient exploration of the dealloying process and validation of ML predictions, thereby accelerating the discovery of thin-film SSMD systems with targeted nanostructures.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 35","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501739","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thin-film solid-state metal dealloying (thin-film SSMD) is a promising method for fabricating nanostructures with controlled morphology and efficiency, offering advantages over conventional bulk materials processing methods for integration into practical applications. Although machine learning (ML) has facilitated the design of dealloying systems, the selection of key thermal treatment parameters for nanostructure formation remains largely unknown and dependent on experimental trial and error. To overcome this challenge, a workflow enabling high-throughput characterization of thermal treatment parameters is demonstrated using a laser-based thermal treatment to create temperature gradients on single thin-film samples of Nb-Al/Sc and Nb-Al/Cu. This continuous thermal space enables observation of dealloying transitions and the resulting nanostructures of interest. Through synchrotron X-ray multimodal and high-throughput characterization, critical transitions and nanostructures can be rapidly captured and subsequently verified using electron microscopy. The key temperatures driving chemical reactions and morphological evolutions are clearly identified. While the oxidation may influence nanostructure formation during thin-film treatment, the dealloying process at the dealloying front involves interactions solely between the dealloying elements, highlighting the availability and viability of the selected systems. This approach enables efficient exploration of the dealloying process and validation of ML predictions, thereby accelerating the discovery of thin-film SSMD systems with targeted nanostructures.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.