Accelerating Discovery of Solid-State Thin-Film Metal Dealloying for 3D Nanoarchitecture Materials Design through Laser Thermal Gradient Treatment

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-15 DOI:10.1002/smll.202501739
Cheng-Chu Chung, Ruipeng Li, Gabriel M. Veith, Honghu Zhang, Fernando Camino, Ming Lu, Nikhil Tiwale, Sheng Zhang, Kevin G. Yager, Yu-chen Karen Chen-Wiegart
{"title":"Accelerating Discovery of Solid-State Thin-Film Metal Dealloying for 3D Nanoarchitecture Materials Design through Laser Thermal Gradient Treatment","authors":"Cheng-Chu Chung,&nbsp;Ruipeng Li,&nbsp;Gabriel M. Veith,&nbsp;Honghu Zhang,&nbsp;Fernando Camino,&nbsp;Ming Lu,&nbsp;Nikhil Tiwale,&nbsp;Sheng Zhang,&nbsp;Kevin G. Yager,&nbsp;Yu-chen Karen Chen-Wiegart","doi":"10.1002/smll.202501739","DOIUrl":null,"url":null,"abstract":"<p>Thin-film solid-state metal dealloying (thin-film SSMD) is a promising method for fabricating nanostructures with controlled morphology and efficiency, offering advantages over conventional bulk materials processing methods for integration into practical applications. Although machine learning (ML) has facilitated the design of dealloying systems, the selection of key thermal treatment parameters for nanostructure formation remains largely unknown and dependent on experimental trial and error. To overcome this challenge, a workflow enabling high-throughput characterization of thermal treatment parameters is demonstrated using a laser-based thermal treatment to create temperature gradients on single thin-film samples of Nb-Al/Sc and Nb-Al/Cu. This continuous thermal space enables observation of dealloying transitions and the resulting nanostructures of interest. Through synchrotron X-ray multimodal and high-throughput characterization, critical transitions and nanostructures can be rapidly captured and subsequently verified using electron microscopy. The key temperatures driving chemical reactions and morphological evolutions are clearly identified. While the oxidation may influence nanostructure formation during thin-film treatment, the dealloying process at the dealloying front involves interactions solely between the dealloying elements, highlighting the availability and viability of the selected systems. This approach enables efficient exploration of the dealloying process and validation of ML predictions, thereby accelerating the discovery of thin-film SSMD systems with targeted nanostructures.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 35","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501739","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thin-film solid-state metal dealloying (thin-film SSMD) is a promising method for fabricating nanostructures with controlled morphology and efficiency, offering advantages over conventional bulk materials processing methods for integration into practical applications. Although machine learning (ML) has facilitated the design of dealloying systems, the selection of key thermal treatment parameters for nanostructure formation remains largely unknown and dependent on experimental trial and error. To overcome this challenge, a workflow enabling high-throughput characterization of thermal treatment parameters is demonstrated using a laser-based thermal treatment to create temperature gradients on single thin-film samples of Nb-Al/Sc and Nb-Al/Cu. This continuous thermal space enables observation of dealloying transitions and the resulting nanostructures of interest. Through synchrotron X-ray multimodal and high-throughput characterization, critical transitions and nanostructures can be rapidly captured and subsequently verified using electron microscopy. The key temperatures driving chemical reactions and morphological evolutions are clearly identified. While the oxidation may influence nanostructure formation during thin-film treatment, the dealloying process at the dealloying front involves interactions solely between the dealloying elements, highlighting the availability and viability of the selected systems. This approach enables efficient exploration of the dealloying process and validation of ML predictions, thereby accelerating the discovery of thin-film SSMD systems with targeted nanostructures.

Abstract Image

Abstract Image

通过激光热梯度处理加速发现用于三维纳米结构材料设计的固态薄膜金属脱合金
薄膜固态金属合金化(薄膜SSMD)是一种很有前途的纳米结构制造方法,具有控制形貌和效率,比传统的大块材料加工方法更具优势,可以集成到实际应用中。尽管机器学习(ML)促进了脱合金系统的设计,但纳米结构形成的关键热处理参数的选择在很大程度上仍然未知,并且依赖于实验试验和错误。为了克服这一挑战,研究人员展示了一种能够高通量表征热处理参数的工作流程,该流程使用基于激光的热处理方法在Nb-Al/Sc和Nb-Al/Cu的单个薄膜样品上产生温度梯度。这个连续的热空间可以观察合金的转变和产生的感兴趣的纳米结构。通过同步加速器x射线多模态和高通量表征,可以快速捕获关键跃迁和纳米结构,并随后使用电子显微镜进行验证。驱动化学反应和形态进化的关键温度被清楚地识别出来。虽然氧化可能会影响薄膜处理过程中纳米结构的形成,但在脱合金前沿的脱合金过程只涉及脱合金元素之间的相互作用,突出了所选系统的可用性和可行性。这种方法可以有效地探索脱合金过程和验证ML预测,从而加速发现具有目标纳米结构的薄膜SSMD系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信