Jiyong Lee, Bouke Biemond, Daan van Keulen, Ymkje Huismans, René M. van Westen, Huib E. de Swart, Henk A. Dijkstra, Wouter M. Kranenburg
{"title":"Global increases of salt intrusion in estuaries under future environmental conditions","authors":"Jiyong Lee, Bouke Biemond, Daan van Keulen, Ymkje Huismans, René M. van Westen, Huib E. de Swart, Henk A. Dijkstra, Wouter M. Kranenburg","doi":"10.1038/s41467-025-58783-6","DOIUrl":null,"url":null,"abstract":"<p>In recent years, increased salt intrusion in surface waters has threatened freshwater availability in coastal regions worldwide. Yet, current future projections of salt intrusion are limited to local regions or changes to single forcing agents. Here, we quantify compounding contributions from changes in river discharge and relative sea level to changing future salt intrusion under a high-emission scenario (Shared Socioeconomic Pathway, SSP3-7.0) for 18 estuaries around the world. We find that the annual 90th percentile future salt intrusion is projected to increase between 1.3% and 18.2% (median 9.1%) in 89% of the studied estuaries worldwide. Our analysis also indicates that, on average, sea-level rise contributes approximately two times more to increasing future salt intrusion than reduced river discharge. We further show that the return levels of present-day 100-year salt intrusion events are projected to increase between 3.2% and 25.2% (median 10.2%) in 83% of the studied estuaries.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"108 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58783-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, increased salt intrusion in surface waters has threatened freshwater availability in coastal regions worldwide. Yet, current future projections of salt intrusion are limited to local regions or changes to single forcing agents. Here, we quantify compounding contributions from changes in river discharge and relative sea level to changing future salt intrusion under a high-emission scenario (Shared Socioeconomic Pathway, SSP3-7.0) for 18 estuaries around the world. We find that the annual 90th percentile future salt intrusion is projected to increase between 1.3% and 18.2% (median 9.1%) in 89% of the studied estuaries worldwide. Our analysis also indicates that, on average, sea-level rise contributes approximately two times more to increasing future salt intrusion than reduced river discharge. We further show that the return levels of present-day 100-year salt intrusion events are projected to increase between 3.2% and 25.2% (median 10.2%) in 83% of the studied estuaries.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.