Stretchable composites with high oxide loading

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yinglin Zhi, Yan Shao, Rui Xia, Weikun Lin, Daohang Cai, Fuxing Zhao, Jiufeng Dong, Qingxian Li, Zihao Wang, Lixuan Li, Long Gu, Peng Tian, Zhen He, Jinlong Wang, Guiling Ning, Baowen Li, Canhui Yang, Hong Wang, Shuhong Yu, Yanhao Yu
{"title":"Stretchable composites with high oxide loading","authors":"Yinglin Zhi, Yan Shao, Rui Xia, Weikun Lin, Daohang Cai, Fuxing Zhao, Jiufeng Dong, Qingxian Li, Zihao Wang, Lixuan Li, Long Gu, Peng Tian, Zhen He, Jinlong Wang, Guiling Ning, Baowen Li, Canhui Yang, Hong Wang, Shuhong Yu, Yanhao Yu","doi":"10.1038/s41467-025-58844-w","DOIUrl":null,"url":null,"abstract":"<p>Oxide/elastomer composites combine the functional attributes of metal oxides with the mechanical deformability of elastomers, but face the challenge of balancing oxide loading and stretchability as ceramic fillers decrease the entropic elasticity of polymer networks. Here, we report an interfacial composite design that enables high oxide fraction and large stretchability by minimizing the contact area yet maximizing the binding strength between the oxide and elastomer. The elongation at break for an interfacial composite with 80 vol% of oxides reaches 500%, whereas that of a regular bulk composite with the same oxide fraction is 20%. These composites are synthesized based on a Marangoni co-assembly process with tuned interfacial tension and reaction at the water-oil interface. The assembly chemistry is nearly independent of oxides’ sizes, compositions, geometries, and functions, making this interfacial structure broadly applicable to optical, electric, magnetic, and thermal-conducting oxides. Compared to bulk composites, the interfacial composites deliver larger magnetic actuation, lower thermal resistance, and higher conformability with nonplanar surfaces, providing rich implications for designing intelligent and electronic systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"49 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58844-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Oxide/elastomer composites combine the functional attributes of metal oxides with the mechanical deformability of elastomers, but face the challenge of balancing oxide loading and stretchability as ceramic fillers decrease the entropic elasticity of polymer networks. Here, we report an interfacial composite design that enables high oxide fraction and large stretchability by minimizing the contact area yet maximizing the binding strength between the oxide and elastomer. The elongation at break for an interfacial composite with 80 vol% of oxides reaches 500%, whereas that of a regular bulk composite with the same oxide fraction is 20%. These composites are synthesized based on a Marangoni co-assembly process with tuned interfacial tension and reaction at the water-oil interface. The assembly chemistry is nearly independent of oxides’ sizes, compositions, geometries, and functions, making this interfacial structure broadly applicable to optical, electric, magnetic, and thermal-conducting oxides. Compared to bulk composites, the interfacial composites deliver larger magnetic actuation, lower thermal resistance, and higher conformability with nonplanar surfaces, providing rich implications for designing intelligent and electronic systems.

Abstract Image

高氧化物含量的可拉伸复合材料
氧化物/弹性体复合材料结合了金属氧化物的功能属性和弹性体的机械变形性,但由于陶瓷填料会降低聚合物网络的熵弹性,因此面临着平衡氧化物负载和拉伸性的挑战。在此,我们报告了一种界面复合材料设计,这种设计通过最大限度地减小接触面积,同时最大限度地提高氧化物与弹性体之间的结合强度,从而实现了高氧化物含量和高拉伸性。氧化物含量为 80% 的界面复合材料的断裂伸长率达到 500%,而氧化物含量相同的普通块状复合材料的断裂伸长率仅为 20%。这些复合材料是基于马兰戈尼共聚过程合成的,在水油界面上具有可调的界面张力和反应。这种组装化学反应几乎不受氧化物尺寸、成分、几何形状和功能的影响,因此这种界面结构可广泛应用于光学、电学、磁学和导热氧化物。与块状复合材料相比,界面复合材料具有更大的磁驱动力、更低的热阻以及与非平面表面更高的顺应性,为设计智能和电子系统提供了丰富的内涵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信