Physical twinning for joint encoding-decoding optimization in computational optics: a review

IF 20.6 Q1 OPTICS
Liheng Bian, Xinrui Zhan, Rong Yan, Xuyang Chang, Hua Huang, Jun Zhang
{"title":"Physical twinning for joint encoding-decoding optimization in computational optics: a review","authors":"Liheng Bian, Xinrui Zhan, Rong Yan, Xuyang Chang, Hua Huang, Jun Zhang","doi":"10.1038/s41377-025-01810-4","DOIUrl":null,"url":null,"abstract":"<p>Computational optics introduces computation into optics and consequently helps overcome traditional optical limitations such as low sensing dimension, low light throughput, low resolution, and so on. The combination of optical encoding and computational decoding offers enhanced imaging and sensing capabilities with diverse applications in biomedicine, astronomy, agriculture, etc. With the great advance of artificial intelligence in the last decade, deep learning has further boosted computational optics with higher precision and efficiency. Recently, there developed an end-to-end joint optimization technique that digitally twins optical encoding to neural network layers, and then facilitates simultaneous optimization with the decoding process. This framework offers effective performance enhancement over conventional techniques. However, the reverse physical twinning from optimized encoding parameters to practical modulation elements faces a serious challenge, due to the discrepant gap in such as bit depth, numerical range, and stability. In this regard, this review explores various optical modulation elements across spatial, phase, and spectral dimensions in the digital twin model for joint encoding-decoding optimization. Our analysis offers constructive guidance for finding the most appropriate modulation element in diverse imaging and sensing tasks concerning various requirements of precision, speed, and robustness. The review may help tackle the above twinning challenge and pave the way for next-generation computational optics.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"359 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01810-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Computational optics introduces computation into optics and consequently helps overcome traditional optical limitations such as low sensing dimension, low light throughput, low resolution, and so on. The combination of optical encoding and computational decoding offers enhanced imaging and sensing capabilities with diverse applications in biomedicine, astronomy, agriculture, etc. With the great advance of artificial intelligence in the last decade, deep learning has further boosted computational optics with higher precision and efficiency. Recently, there developed an end-to-end joint optimization technique that digitally twins optical encoding to neural network layers, and then facilitates simultaneous optimization with the decoding process. This framework offers effective performance enhancement over conventional techniques. However, the reverse physical twinning from optimized encoding parameters to practical modulation elements faces a serious challenge, due to the discrepant gap in such as bit depth, numerical range, and stability. In this regard, this review explores various optical modulation elements across spatial, phase, and spectral dimensions in the digital twin model for joint encoding-decoding optimization. Our analysis offers constructive guidance for finding the most appropriate modulation element in diverse imaging and sensing tasks concerning various requirements of precision, speed, and robustness. The review may help tackle the above twinning challenge and pave the way for next-generation computational optics.

Abstract Image

计算光学中编码-解码联合优化的物理孪生:综述
计算光学将计算引入光学,因此有助于克服传统光学的局限性,如感知维度低、光吞吐量低、分辨率低等。光学编码与计算解码的结合增强了成像和传感能力,在生物医学、天文学、农业等领域有着广泛的应用。近十年来,随着人工智能的飞速发展,深度学习以更高的精度和效率进一步推动了计算光学的发展。最近,一种端到端联合优化技术应运而生,它能将光学编码与神经网络层进行数字孪生,然后促进解码过程的同步优化。与传统技术相比,这种框架能有效提高性能。然而,由于在比特深度、数值范围和稳定性等方面存在差距,从优化编码参数到实际调制元件的反向物理孪生面临着严峻挑战。为此,本综述探讨了数字孪生模型中空间、相位和光谱维度的各种光学调制元件,以实现编码-解码的联合优化。我们的分析为在各种成像和传感任务中找到最合适的调制元件提供了建设性指导,这些任务涉及精度、速度和鲁棒性等各种要求。本综述有助于解决上述孪生挑战,并为下一代计算光学铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信