Hamiltonian engineering of collective XYZ spin models in an optical cavity

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Chengyi Luo, Haoqing Zhang, Anjun Chu, Chitose Maruko, Ana Maria Rey, James K. Thompson
{"title":"Hamiltonian engineering of collective XYZ spin models in an optical cavity","authors":"Chengyi Luo, Haoqing Zhang, Anjun Chu, Chitose Maruko, Ana Maria Rey, James K. Thompson","doi":"10.1038/s41567-025-02866-0","DOIUrl":null,"url":null,"abstract":"<p>Quantum simulations offer opportunities both for studying many-body physics and for generating useful entangled states. However, existing platforms are usually restricted to specific types of interaction, fundamentally limiting the models they can mimic. Here we realize an all-to-all interacting model with an arbitrary quadratic Hamiltonian, thus demonstrating an infinite-range tunable Heisenberg XYZ model. This was accomplished by engineering cavity-mediated four-photon interactions between an ensemble of 700 rubidium atoms with a pair of momentum states serving as the effective qubit degree of freedom. As one example of the versatility of this approach, we implemented the so-called two-axis counter-twisting model, a collective spin model that can generate spin-squeezed states that saturate the Heisenberg limit on quantum phase estimation. Furthermore, our platform allows for including more than two relevant momentum states by simply adding additional dressing laser tones. This approach opens opportunities for quantum simulation and quantum sensing with matter–wave interferometers and other quantum sensors, such as optical clocks and magnetometers.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"22 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02866-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum simulations offer opportunities both for studying many-body physics and for generating useful entangled states. However, existing platforms are usually restricted to specific types of interaction, fundamentally limiting the models they can mimic. Here we realize an all-to-all interacting model with an arbitrary quadratic Hamiltonian, thus demonstrating an infinite-range tunable Heisenberg XYZ model. This was accomplished by engineering cavity-mediated four-photon interactions between an ensemble of 700 rubidium atoms with a pair of momentum states serving as the effective qubit degree of freedom. As one example of the versatility of this approach, we implemented the so-called two-axis counter-twisting model, a collective spin model that can generate spin-squeezed states that saturate the Heisenberg limit on quantum phase estimation. Furthermore, our platform allows for including more than two relevant momentum states by simply adding additional dressing laser tones. This approach opens opportunities for quantum simulation and quantum sensing with matter–wave interferometers and other quantum sensors, such as optical clocks and magnetometers.

Abstract Image

光腔中集体 XYZ 自旋模型的哈密顿工程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信