Qiuquan Yan, Hao Ouyang, Zilong Tao, Meili Shen, Shiyin Du, Jun Zhang, Hengzhu Liu, Hao Hao, Tian Jiang
{"title":"Multi-wavelength optical information processing with deep reinforcement learning","authors":"Qiuquan Yan, Hao Ouyang, Zilong Tao, Meili Shen, Shiyin Du, Jun Zhang, Hengzhu Liu, Hao Hao, Tian Jiang","doi":"10.1038/s41377-025-01846-6","DOIUrl":null,"url":null,"abstract":"<p>Multi-wavelength optical information processing systems are commonly utilized in optical neural networks and broadband signal processing. However, their effectiveness is often compromised by frequency-selective responses caused by fabrication, transmission, and environmental factors. To mitigate these issues, this study introduces a deep reinforcement learning calibration (DRC) method inspired by the deep deterministic policy gradient training strategy. This method continuously and autonomously learns from the system, effectively accumulating experiential knowledge for calibration strategies and demonstrating superior adaptability compared to traditional methods. In systems based on dispersion compensating fiber, micro-ring resonator array, and Mach-Zehnder interferometer array that use multi-wavelength optical carriers as the light source, the DRC method enables the completion of the corresponding signal processing functions within 21 iterations. This method provides efficient and accurate control, making it suitable for applications such as optical convolution computation acceleration, microwave photonic signal processing, and optical network routing.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"26 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01846-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-wavelength optical information processing systems are commonly utilized in optical neural networks and broadband signal processing. However, their effectiveness is often compromised by frequency-selective responses caused by fabrication, transmission, and environmental factors. To mitigate these issues, this study introduces a deep reinforcement learning calibration (DRC) method inspired by the deep deterministic policy gradient training strategy. This method continuously and autonomously learns from the system, effectively accumulating experiential knowledge for calibration strategies and demonstrating superior adaptability compared to traditional methods. In systems based on dispersion compensating fiber, micro-ring resonator array, and Mach-Zehnder interferometer array that use multi-wavelength optical carriers as the light source, the DRC method enables the completion of the corresponding signal processing functions within 21 iterations. This method provides efficient and accurate control, making it suitable for applications such as optical convolution computation acceleration, microwave photonic signal processing, and optical network routing.