Multi-wavelength optical information processing with deep reinforcement learning

IF 20.6 Q1 OPTICS
Qiuquan Yan, Hao Ouyang, Zilong Tao, Meili Shen, Shiyin Du, Jun Zhang, Hengzhu Liu, Hao Hao, Tian Jiang
{"title":"Multi-wavelength optical information processing with deep reinforcement learning","authors":"Qiuquan Yan, Hao Ouyang, Zilong Tao, Meili Shen, Shiyin Du, Jun Zhang, Hengzhu Liu, Hao Hao, Tian Jiang","doi":"10.1038/s41377-025-01846-6","DOIUrl":null,"url":null,"abstract":"<p>Multi-wavelength optical information processing systems are commonly utilized in optical neural networks and broadband signal processing. However, their effectiveness is often compromised by frequency-selective responses caused by fabrication, transmission, and environmental factors. To mitigate these issues, this study introduces a deep reinforcement learning calibration (DRC) method inspired by the deep deterministic policy gradient training strategy. This method continuously and autonomously learns from the system, effectively accumulating experiential knowledge for calibration strategies and demonstrating superior adaptability compared to traditional methods. In systems based on dispersion compensating fiber, micro-ring resonator array, and Mach-Zehnder interferometer array that use multi-wavelength optical carriers as the light source, the DRC method enables the completion of the corresponding signal processing functions within 21 iterations. This method provides efficient and accurate control, making it suitable for applications such as optical convolution computation acceleration, microwave photonic signal processing, and optical network routing.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"26 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01846-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-wavelength optical information processing systems are commonly utilized in optical neural networks and broadband signal processing. However, their effectiveness is often compromised by frequency-selective responses caused by fabrication, transmission, and environmental factors. To mitigate these issues, this study introduces a deep reinforcement learning calibration (DRC) method inspired by the deep deterministic policy gradient training strategy. This method continuously and autonomously learns from the system, effectively accumulating experiential knowledge for calibration strategies and demonstrating superior adaptability compared to traditional methods. In systems based on dispersion compensating fiber, micro-ring resonator array, and Mach-Zehnder interferometer array that use multi-wavelength optical carriers as the light source, the DRC method enables the completion of the corresponding signal processing functions within 21 iterations. This method provides efficient and accurate control, making it suitable for applications such as optical convolution computation acceleration, microwave photonic signal processing, and optical network routing.

Abstract Image

利用深度强化学习进行多波长光学信息处理
多波长光信息处理系统是光神经网络和宽带信号处理中常用的系统。然而,它们的有效性经常受到制造、传输和环境因素引起的频率选择响应的影响。为了缓解这些问题,本研究引入了一种受深度确定性策略梯度训练策略启发的深度强化学习校准(DRC)方法。该方法持续自主地从系统中学习,有效地积累了校准策略的经验知识,与传统方法相比具有更强的适应性。在基于色散补偿光纤、微环谐振器阵列和以多波长光载波为光源的Mach-Zehnder干涉仪阵列的系统中,DRC方法可以在21次迭代内完成相应的信号处理功能。该方法提供了高效、精确的控制,适用于光卷积计算加速、微波光子信号处理、光网络路由等应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信