Aleksandra Eremina, Christian Schwall, Teresa Saez, Lennart Witting, Dietrich Kohlheyer, Bruno M. C. Martins, Philipp Thomas, James C. W. Locke
{"title":"Environmental and molecular noise buffering by the cyanobacterial clock in individual cells","authors":"Aleksandra Eremina, Christian Schwall, Teresa Saez, Lennart Witting, Dietrich Kohlheyer, Bruno M. C. Martins, Philipp Thomas, James C. W. Locke","doi":"10.1038/s41467-025-58169-8","DOIUrl":null,"url":null,"abstract":"<p>Circadian clocks enable organisms to anticipate daily cycles, while being robust to molecular and environmental noise. Here, we show how the clock of the cyanobacterium <i>Synechococcus elongatus PCC 7942</i> buffers genetic and environmental perturbations through its core KaiABC phosphorylation loop. We first characterise single-cell clock dynamics in clock mutants using a microfluidics device that allows precise control of the microenvironment. We find that known clock regulators are dispensable for clock robustness, whilst perturbations of the core clock reveal that the wild type operates at a noise optimum that we can reproduce in a stochastic model of just the core phosphorylation loop. We then examine how the clock responds to noisy environments, including natural light conditions. The model accurately predicts how the clock filters out environmental noise, including fast light fluctuations, to keep time while remaining responsive to environmental shifts. Our findings illustrate how a simple clock network can exhibit complex noise filtering properties, advancing our understanding of how biological circuits can perform accurately in natural environments.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"40 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58169-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Circadian clocks enable organisms to anticipate daily cycles, while being robust to molecular and environmental noise. Here, we show how the clock of the cyanobacterium Synechococcus elongatus PCC 7942 buffers genetic and environmental perturbations through its core KaiABC phosphorylation loop. We first characterise single-cell clock dynamics in clock mutants using a microfluidics device that allows precise control of the microenvironment. We find that known clock regulators are dispensable for clock robustness, whilst perturbations of the core clock reveal that the wild type operates at a noise optimum that we can reproduce in a stochastic model of just the core phosphorylation loop. We then examine how the clock responds to noisy environments, including natural light conditions. The model accurately predicts how the clock filters out environmental noise, including fast light fluctuations, to keep time while remaining responsive to environmental shifts. Our findings illustrate how a simple clock network can exhibit complex noise filtering properties, advancing our understanding of how biological circuits can perform accurately in natural environments.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.