Exploring the chemical behaviors of dissolved organic matter to thermal hydrolysis temperature at the molecular level and its fate in anaerobic membrane bioreactor
Jian Yin , Teng Cai , Yizhi Zhang , Qicai Dai , Yijing Gao , Siqin Li , Xueqin Lu , Guangyin Zhen
{"title":"Exploring the chemical behaviors of dissolved organic matter to thermal hydrolysis temperature at the molecular level and its fate in anaerobic membrane bioreactor","authors":"Jian Yin , Teng Cai , Yizhi Zhang , Qicai Dai , Yijing Gao , Siqin Li , Xueqin Lu , Guangyin Zhen","doi":"10.1016/j.watres.2025.123650","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal hydrolysis pretreatment (THP) coupled with anaerobic membrane bioreactor (AnMBR) to enhance biomass bioconversion and methane production is a promising biotechnology. Herein, we shed light on the effects of THP temperature on molecular structure changes of dissolved organic matter of sewage sludge and food waste and its underlying mechanisms on hydrolysis, and methane bioconversion. The optimal THP condition was 160 °C, with a 1.87-times increase in soluble chemical oxygen demand (6.35 ± 0.09 g/L). FT-ICR MS indicated most of the compounds were biodegradable after 160 °C THP treatment, which had low aromatic or polarity, corresponding to protein/amino sugars and unsaturated hydrocarbon regions. Side reactions, like Maillard reaction and caramelization, induced the production of recalcitrant formulas with high hydrophobic and aromatic structure content (lower O/C and H/C values). These recalcitrant formulas attributed to carboxylic-rich alicyclic molecules (CRAM) exhibited poor biodegradability. For homologous DOMs sharing the same Kendrick mass defect (KMD), compounds exhibiting lower nominal oxidation state of carbon (NOSC), higher H/C ratios, and lower O/C ratios tend to exhibit greater biodegradability. Microbial analysis revealed that samples after THP pretreatment showed enhanced enrichment of both organic matter-degrading bacteria (e.g., Prolixibacteraceae, Anaerolineae and SJA-15) and methanogenic archaea (e.g., Methanosaeta, Methanobacterium, and Candidatus Methanofastidiosum) during the AD process. leading to a synergistic effect among microorganisms (such as <em>Anaerolineae</em> and <em>Methanosaeta</em>). Our findings highlight the interactive mechanism among molecular-level DOMs composition, microbial community succession, and AnMBR's performance, which provides a basis for an in-depth understanding of the THP strategy on anaerobic digestion.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"281 ","pages":"Article 123650"},"PeriodicalIF":11.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425005603","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal hydrolysis pretreatment (THP) coupled with anaerobic membrane bioreactor (AnMBR) to enhance biomass bioconversion and methane production is a promising biotechnology. Herein, we shed light on the effects of THP temperature on molecular structure changes of dissolved organic matter of sewage sludge and food waste and its underlying mechanisms on hydrolysis, and methane bioconversion. The optimal THP condition was 160 °C, with a 1.87-times increase in soluble chemical oxygen demand (6.35 ± 0.09 g/L). FT-ICR MS indicated most of the compounds were biodegradable after 160 °C THP treatment, which had low aromatic or polarity, corresponding to protein/amino sugars and unsaturated hydrocarbon regions. Side reactions, like Maillard reaction and caramelization, induced the production of recalcitrant formulas with high hydrophobic and aromatic structure content (lower O/C and H/C values). These recalcitrant formulas attributed to carboxylic-rich alicyclic molecules (CRAM) exhibited poor biodegradability. For homologous DOMs sharing the same Kendrick mass defect (KMD), compounds exhibiting lower nominal oxidation state of carbon (NOSC), higher H/C ratios, and lower O/C ratios tend to exhibit greater biodegradability. Microbial analysis revealed that samples after THP pretreatment showed enhanced enrichment of both organic matter-degrading bacteria (e.g., Prolixibacteraceae, Anaerolineae and SJA-15) and methanogenic archaea (e.g., Methanosaeta, Methanobacterium, and Candidatus Methanofastidiosum) during the AD process. leading to a synergistic effect among microorganisms (such as Anaerolineae and Methanosaeta). Our findings highlight the interactive mechanism among molecular-level DOMs composition, microbial community succession, and AnMBR's performance, which provides a basis for an in-depth understanding of the THP strategy on anaerobic digestion.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.