A terahertz-bandwidth non-magnetic isolator

IF 32.3 1区 物理与天体物理 Q1 OPTICS
Haotian Cheng, Yishu Zhou, Freek Ruesink, Margaret Pavlovich, Shai Gertler, Andrew L. Starbuck, Andrew J. Leenheer, Andrew T. Pomerene, Douglas C. Trotter, Christina Dallo, Matthew Boady, Katherine M. Musick, Michael Gehl, Ashok Kodigala, Matt Eichenfield, Anthony L. Lentine, Nils T. Otterstrom, Peter T. Rakich
{"title":"A terahertz-bandwidth non-magnetic isolator","authors":"Haotian Cheng, Yishu Zhou, Freek Ruesink, Margaret Pavlovich, Shai Gertler, Andrew L. Starbuck, Andrew J. Leenheer, Andrew T. Pomerene, Douglas C. Trotter, Christina Dallo, Matthew Boady, Katherine M. Musick, Michael Gehl, Ashok Kodigala, Matt Eichenfield, Anthony L. Lentine, Nils T. Otterstrom, Peter T. Rakich","doi":"10.1038/s41566-025-01663-8","DOIUrl":null,"url":null,"abstract":"<p>Wideband optical isolators are critical for the robust operation of virtually all photonic systems. However, they have been challenging to realize in the integrated form due to the incompatibility of magnetic media with these circuit technologies. Here we present the first-ever demonstration of an integrated non-magnetic optical isolator with terahertz-level optical bandwidth. The system comprises two acousto-optic beamsplitters that create a non-reciprocal multimode interferometer exhibiting high-contrast, non-reciprocal light transmission. We dramatically enhance the isolation bandwidth of this system by precisely balancing the group delays of the paths of the interferometer. Using this approach, we demonstrate integrated non-magnetic isolators with an optical contrast as high as 24.5 dB, insertion losses as low as −2.16 dB and optical bandwidths as high as 2 THz (16 nm). We also show that the centre frequency and direction of optical isolation are rapidly reconfigurable by tuning the relative phase of the microwave signals used to drive the acousto-optic beamsplitters. With their complementary metal–oxide–semiconductor compatibility, wideband operation, low losses and rapid reconfigurability, such integrated isolators address a key barrier to the integration of a wide range of photonic functionalities on a chip.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"183 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01663-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Wideband optical isolators are critical for the robust operation of virtually all photonic systems. However, they have been challenging to realize in the integrated form due to the incompatibility of magnetic media with these circuit technologies. Here we present the first-ever demonstration of an integrated non-magnetic optical isolator with terahertz-level optical bandwidth. The system comprises two acousto-optic beamsplitters that create a non-reciprocal multimode interferometer exhibiting high-contrast, non-reciprocal light transmission. We dramatically enhance the isolation bandwidth of this system by precisely balancing the group delays of the paths of the interferometer. Using this approach, we demonstrate integrated non-magnetic isolators with an optical contrast as high as 24.5 dB, insertion losses as low as −2.16 dB and optical bandwidths as high as 2 THz (16 nm). We also show that the centre frequency and direction of optical isolation are rapidly reconfigurable by tuning the relative phase of the microwave signals used to drive the acousto-optic beamsplitters. With their complementary metal–oxide–semiconductor compatibility, wideband operation, low losses and rapid reconfigurability, such integrated isolators address a key barrier to the integration of a wide range of photonic functionalities on a chip.

Abstract Image

太赫兹带宽非磁性隔离器
宽带光隔离器对于几乎所有光子系统的稳健运行至关重要。然而,由于磁性介质与这些电路技术的不兼容,它们在集成形式中实现一直具有挑战性。在这里,我们首次展示了具有太赫兹级光带宽的集成非磁性光隔离器。该系统包括两个声光分束器,产生一个非倒易多模干涉仪,显示高对比度,非倒易光传输。我们通过精确地平衡干涉仪路径的群延迟,极大地提高了系统的隔离带宽。利用这种方法,我们展示了集成的非磁隔离器,其光学对比度高达24.5 dB,插入损耗低至- 2.16 dB,光带宽高达2太赫兹(16 nm)。我们还表明,通过调整用于驱动声光分束器的微波信号的相对相位,可以快速重新配置光隔离的中心频率和方向。这种集成隔离器具有互补的金属-氧化物-半导体兼容性、宽带操作、低损耗和快速可重构性,解决了在芯片上集成各种光子功能的关键障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信