Electrospun Thermoplastic Polyurethane Fibrous Membrane Decorated with MXene/Carbon Black for Dual-Mode Human Movement Monitoring and Energy Harvesting
IF 4.2 3区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qingsen Gao, Xin Wang, Dirk W. Schubert, Xianhu Liu
{"title":"Electrospun Thermoplastic Polyurethane Fibrous Membrane Decorated with MXene/Carbon Black for Dual-Mode Human Movement Monitoring and Energy Harvesting","authors":"Qingsen Gao, Xin Wang, Dirk W. Schubert, Xianhu Liu","doi":"10.1002/mame.202400357","DOIUrl":null,"url":null,"abstract":"<p>Conductive fiber membranes have received widespread attention due to their excellent physical and chemical properties. However, developing conductive fiber membranes for both strain sensing and energy harvesting remains a challenge. Herein, a novel thermoplastic polyurethane (TPU)/polydopamine (PDA)/MXene/carbon black (CB) (TPMC) conductive fibrous membrane is developed by combining electrospinning and layer-by-layer dip-coating processes. The TPMC fibrous membrane can be used as a component of strain sensors and triboelectric nanogenerators (TENG) to achieve dual-mode human motion detection and energy harvesting. The strain sensor boasts a wide operating range (0.5%-195%), excellent sensitivity (with a gauge factor (GF) up to 54 at 50% strain and maximum GF of 6.5×10<sup>4</sup>), fast response (80 ms) and excellent cycle durability (over 10 000 cycles), making it possible to detect slight or heavy human activities under various conditions effectively. Additionally, a single-electrode TENG utilizing the TPMC membrane achieves an output voltage of 115 V, a current of 0.8 µA, and a power density of 68 mW m⁻<sup>2</sup>, also serving as a self-powered sensor for various movements. The excellent dual-mode sensing and energy harvesting properties make it promising for future high-performance wearable devices.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400357","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400357","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Conductive fiber membranes have received widespread attention due to their excellent physical and chemical properties. However, developing conductive fiber membranes for both strain sensing and energy harvesting remains a challenge. Herein, a novel thermoplastic polyurethane (TPU)/polydopamine (PDA)/MXene/carbon black (CB) (TPMC) conductive fibrous membrane is developed by combining electrospinning and layer-by-layer dip-coating processes. The TPMC fibrous membrane can be used as a component of strain sensors and triboelectric nanogenerators (TENG) to achieve dual-mode human motion detection and energy harvesting. The strain sensor boasts a wide operating range (0.5%-195%), excellent sensitivity (with a gauge factor (GF) up to 54 at 50% strain and maximum GF of 6.5×104), fast response (80 ms) and excellent cycle durability (over 10 000 cycles), making it possible to detect slight or heavy human activities under various conditions effectively. Additionally, a single-electrode TENG utilizing the TPMC membrane achieves an output voltage of 115 V, a current of 0.8 µA, and a power density of 68 mW m⁻2, also serving as a self-powered sensor for various movements. The excellent dual-mode sensing and energy harvesting properties make it promising for future high-performance wearable devices.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)