Rusheni B. Senanayake, Houlei Gan, Dan Liu, Asanka P. Basnayake, Michael T. Heitzmann, Russell J. Varley
{"title":"Synthesis and Characterization of DOPO Modified Tetraglycidyl Eugenol Cyclic Siloxane Resins Cured with Tannic Acid","authors":"Rusheni B. Senanayake, Houlei Gan, Dan Liu, Asanka P. Basnayake, Michael T. Heitzmann, Russell J. Varley","doi":"10.1002/mame.202400342","DOIUrl":null,"url":null,"abstract":"<p>In this work, a tetra glycidyl eugenol cyclic siloxane resin (TGED<sub>4</sub>) is synthesized, then further modified with 9,10-dihydro-9-oxa-10-phosphaphenathrene-10-oxide (DOPO) to produce Si and P epoxy resins. After blending with diglycidyl ether of bisphenol A (DGEBA) and curing with tannic acid (TA), high performance, fire-retardant polymer networks are created. Near infrared spectroscopy (NIR) confirms the networks are highly cured and have low extractable content, while dynamic mechanical thermal analysis (DMTA) displays a lower T<sub>g</sub> and heterogeneous network with increasing DOPO. The networks display a maximum improvement in flexural modulus, strength, and strain to failure of 20.6%, 55.5%, and 78.8% respectively, and at 65.4 MPa strength and 2.8 GPa modulus are comparable to high-performance networks. Thermogravimetric analysis (TGA) shows that increasing P reduces thermal stability, but contributes to higher char yield despite lower Si. The fire retardancy improve markedly measured via limiting oxygen index (LOI), increasing from 26.5% to a maximum of 35.5%, while V-0 behavior is readily achieved at the lowest DOPO content. Cone colorimetry further reduces peak heat release rate (PHHR) and total heat release rate (THHR) by 28% and 42%. This work presents hybrid bio-derived epoxy resins with excellent fire retardancy and good mechanical properties.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400342","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400342","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a tetra glycidyl eugenol cyclic siloxane resin (TGED4) is synthesized, then further modified with 9,10-dihydro-9-oxa-10-phosphaphenathrene-10-oxide (DOPO) to produce Si and P epoxy resins. After blending with diglycidyl ether of bisphenol A (DGEBA) and curing with tannic acid (TA), high performance, fire-retardant polymer networks are created. Near infrared spectroscopy (NIR) confirms the networks are highly cured and have low extractable content, while dynamic mechanical thermal analysis (DMTA) displays a lower Tg and heterogeneous network with increasing DOPO. The networks display a maximum improvement in flexural modulus, strength, and strain to failure of 20.6%, 55.5%, and 78.8% respectively, and at 65.4 MPa strength and 2.8 GPa modulus are comparable to high-performance networks. Thermogravimetric analysis (TGA) shows that increasing P reduces thermal stability, but contributes to higher char yield despite lower Si. The fire retardancy improve markedly measured via limiting oxygen index (LOI), increasing from 26.5% to a maximum of 35.5%, while V-0 behavior is readily achieved at the lowest DOPO content. Cone colorimetry further reduces peak heat release rate (PHHR) and total heat release rate (THHR) by 28% and 42%. This work presents hybrid bio-derived epoxy resins with excellent fire retardancy and good mechanical properties.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)