İrem Çağlı, Büşra Elif Kıvrak, Osman Altunbaş, Çağla Sönmez
{"title":"Unveiling the Impact of Vernalisation on Seed Oil Content and Fatty Acid Composition in Rapeseed (Brassica napus L.) Through Simulated Shorter Winters","authors":"İrem Çağlı, Büşra Elif Kıvrak, Osman Altunbaş, Çağla Sönmez","doi":"10.1111/jac.70057","DOIUrl":null,"url":null,"abstract":"<p>Climate change is leading to warmer winters world-wide with an increasing number of extreme events every year. Studies show that winter varieties of rapeseed are particularly impacted negatively by global warming. This study investigates the molecular, physiological, and biochemical effects of diverse vernalisation scenarios (i.e., the vernalisation models) on rapeseed plants and seeds. The winter and spring varieties of rapeseed (<i>Brassica napus</i> L.) were subjected to short durations of vernalisation (3 and 4 weeks) as well as to 6- and 8-week long vernalisation interrupted by 1-week devernalisation intervals at warm temperatures. Our results reveal a notable difference in vernalisation responsiveness in major floral regulator <i>FLC</i> orthologues between the late-flowering winter variety, Darmor, the early-flowering winter variety, Bristol, and the spring variety, Helios, after 3 weeks of vernalisation. Within the three <i>FLC</i> genes (<i>BnaFLCA02</i>, <i>BnaFLCA10</i>, and <i>BnaFLCC02</i>) analysed in this study, <i>BnaFLCA10</i> emerged as the most responsive to vernalisation in all three varieties. The vernalisation duration significantly influenced seed oil content and fatty acid composition in both Bristol and Helios varieties. In Bristol, the 2 + 6w vernalisation model in which vernalisation was interrupted for 1 week after 2 weeks of vernalisation and continued for another 4 weeks consistently resulted in the highest oil content and oleic acid percentage. The interrupted vernalisation (2 + 4w and 2 + 6w) also led to increased monounsaturated fatty acids across all 3 years. In Helios, non-vernalised plants produced seeds with the lowest oil content, and vernalisation duration positively correlated with both seed oil content and oleic acid percentage. Our findings unveil a robust correlation between vernalisation and seed oil content, as well as fatty acid composition in rapeseed.</p>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"211 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jac.70057","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.70057","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change is leading to warmer winters world-wide with an increasing number of extreme events every year. Studies show that winter varieties of rapeseed are particularly impacted negatively by global warming. This study investigates the molecular, physiological, and biochemical effects of diverse vernalisation scenarios (i.e., the vernalisation models) on rapeseed plants and seeds. The winter and spring varieties of rapeseed (Brassica napus L.) were subjected to short durations of vernalisation (3 and 4 weeks) as well as to 6- and 8-week long vernalisation interrupted by 1-week devernalisation intervals at warm temperatures. Our results reveal a notable difference in vernalisation responsiveness in major floral regulator FLC orthologues between the late-flowering winter variety, Darmor, the early-flowering winter variety, Bristol, and the spring variety, Helios, after 3 weeks of vernalisation. Within the three FLC genes (BnaFLCA02, BnaFLCA10, and BnaFLCC02) analysed in this study, BnaFLCA10 emerged as the most responsive to vernalisation in all three varieties. The vernalisation duration significantly influenced seed oil content and fatty acid composition in both Bristol and Helios varieties. In Bristol, the 2 + 6w vernalisation model in which vernalisation was interrupted for 1 week after 2 weeks of vernalisation and continued for another 4 weeks consistently resulted in the highest oil content and oleic acid percentage. The interrupted vernalisation (2 + 4w and 2 + 6w) also led to increased monounsaturated fatty acids across all 3 years. In Helios, non-vernalised plants produced seeds with the lowest oil content, and vernalisation duration positively correlated with both seed oil content and oleic acid percentage. Our findings unveil a robust correlation between vernalisation and seed oil content, as well as fatty acid composition in rapeseed.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.