{"title":"Evaluating the Potential of Rhizobacterial Isolates Enhancing Sorghum's Abiotic Stress Tolerance: A Focus on Ethiopian Soil Isolates From Sorghum Root","authors":"Mekdes Mulugeta, Daniel Yimer, Tilahun Rabuma","doi":"10.1111/jac.70062","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Sorghum is an economically important crop for human consumption, animal feed and biomass production. However, its productivity is affected by abiotic and biotic stresses. Drought is one of the major global problems due to alarming global climate change. Plant growth-promoting rhizobacteria (PGPR) help crops improve their resilience and survival in water-scarce environments. Therefore, the present study aimed to investigate the growth-promoting potential of rhizobacterial isolates to improve sorghum tolerance to drought and other abiotic stress. The bacterial sample from different soil roots of sorghum genotype was isolated from different locations in Ethiopia using serial dilution techniques. The biochemical properties of these isolates were evaluated. The potential of these PGPR traits to improve abiotic tolerance in sorghum was analysed under different temperatures, pH, salinity and drought stress. Furthermore, the potential of the rhizobacterial isolates' performance to improve sorghum drought tolerance was evaluated using four different concentrations of PEG (6000): (10%, 15%, 25% and 32.6%), which induces osmotic stress by reducing water availability, thus mimicking the effects of drought in sorghum. PCR detection of genes associated with abiotic stress, such as phosphate solubilisation, nitrogen fixation, ACC (1-aminocyclopropane-1-carboxylate) deaminase and phytohormone production was performed using the designed primers. In addition, identification and molecular characterisation of PGPRs was performed using 16S ribosomal RNA (rRNA) gene-specific primers. Serial dilution techniques of soil from different sorghum genotype roots resulted in the identification of 210 rhizobacterial isolates. Biochemical analysis revealed that 68 isolates exhibited their potential for nitrogen fixation, while 50 isolates showed their ability to solubilise phosphate. PCR amplification identified genes involved in phosphate solubilisation, nitrogen fixation, ACC (1-aminocyclopropane-1-carboxylate) deaminase and phytohormone production in several rhizobacterial isolates, suggesting that they have the potential to improve sorghum abiotic stress tolerance. Among the 68 rhizobacterial isolates examined, PCR amplification identified the <i>nifH</i> gene in 16 isolates, the <i>acdS</i> gene in 10 isolates and the <i>pgg</i> gene in 21 isolates. Among these, the <i>Pseudomonas</i> ms22 bacterial isolate showed a high potential to promote sorghum growth under greenhouse performance. Therefore, our findings suggest that harnessing the potential of <i>Pseudomonas</i> ms22 could pave the way for environmentally friendly and efficient agricultural practices under abiotic stress conditions.</p>\n </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"211 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.70062","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Sorghum is an economically important crop for human consumption, animal feed and biomass production. However, its productivity is affected by abiotic and biotic stresses. Drought is one of the major global problems due to alarming global climate change. Plant growth-promoting rhizobacteria (PGPR) help crops improve their resilience and survival in water-scarce environments. Therefore, the present study aimed to investigate the growth-promoting potential of rhizobacterial isolates to improve sorghum tolerance to drought and other abiotic stress. The bacterial sample from different soil roots of sorghum genotype was isolated from different locations in Ethiopia using serial dilution techniques. The biochemical properties of these isolates were evaluated. The potential of these PGPR traits to improve abiotic tolerance in sorghum was analysed under different temperatures, pH, salinity and drought stress. Furthermore, the potential of the rhizobacterial isolates' performance to improve sorghum drought tolerance was evaluated using four different concentrations of PEG (6000): (10%, 15%, 25% and 32.6%), which induces osmotic stress by reducing water availability, thus mimicking the effects of drought in sorghum. PCR detection of genes associated with abiotic stress, such as phosphate solubilisation, nitrogen fixation, ACC (1-aminocyclopropane-1-carboxylate) deaminase and phytohormone production was performed using the designed primers. In addition, identification and molecular characterisation of PGPRs was performed using 16S ribosomal RNA (rRNA) gene-specific primers. Serial dilution techniques of soil from different sorghum genotype roots resulted in the identification of 210 rhizobacterial isolates. Biochemical analysis revealed that 68 isolates exhibited their potential for nitrogen fixation, while 50 isolates showed their ability to solubilise phosphate. PCR amplification identified genes involved in phosphate solubilisation, nitrogen fixation, ACC (1-aminocyclopropane-1-carboxylate) deaminase and phytohormone production in several rhizobacterial isolates, suggesting that they have the potential to improve sorghum abiotic stress tolerance. Among the 68 rhizobacterial isolates examined, PCR amplification identified the nifH gene in 16 isolates, the acdS gene in 10 isolates and the pgg gene in 21 isolates. Among these, the Pseudomonas ms22 bacterial isolate showed a high potential to promote sorghum growth under greenhouse performance. Therefore, our findings suggest that harnessing the potential of Pseudomonas ms22 could pave the way for environmentally friendly and efficient agricultural practices under abiotic stress conditions.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.