Influence of hydraulic properties on soil detachment rate at different slope positions during the spring thaw period

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Kai Zhang, Yikui Bai, Suhua Fu, Xuan Wang
{"title":"Influence of hydraulic properties on soil detachment rate at different slope positions during the spring thaw period","authors":"Kai Zhang,&nbsp;Yikui Bai,&nbsp;Suhua Fu,&nbsp;Xuan Wang","doi":"10.1002/esp.70058","DOIUrl":null,"url":null,"abstract":"<p>Rainfall and snowmelt runoff are the primary drivers of soil detachment in cold regions. Understanding how hydraulic properties influence the soil detachment rate (<i>D</i><sub><i>r</i></sub>) is essential for accurately modelling soil erosion during the spring thaw period. This study aimed to clarify the relationship between hydraulic parameters and <i>D</i><sub><i>r</i></sub> at different slope positions. Experiments were conducted under four flow discharge conditions (4.5, 6.5, 8.5 and 10.5 L min<sup>−1</sup>), two slope gradients (10° and 15°) and four thawing depths (2, 5, 10 and 15 cm). Results indicated <i>Dr</i> could be adequately described as a power function of the flow discharges increasing with shear stress, the resistance coefficient and stream power. Shear stress was identified as the most effective hydrodynamic parameter for predicting <i>D</i><sub><i>r</i></sub> at upslope (first slope) and midslope (second slope) positions, whereas stream power best predicted <i>D</i><sub><i>r</i></sub> at the downslope (third slope) position. Unit stream power was not a reliable predictor of <i>D</i><sub><i>r</i></sub>. These findings enhance the mechanistic understanding of soil erosion processes occurring during the spring thaw period and improve the predictive capabilities of soil erosion models.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"50 5","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.70058","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rainfall and snowmelt runoff are the primary drivers of soil detachment in cold regions. Understanding how hydraulic properties influence the soil detachment rate (Dr) is essential for accurately modelling soil erosion during the spring thaw period. This study aimed to clarify the relationship between hydraulic parameters and Dr at different slope positions. Experiments were conducted under four flow discharge conditions (4.5, 6.5, 8.5 and 10.5 L min−1), two slope gradients (10° and 15°) and four thawing depths (2, 5, 10 and 15 cm). Results indicated Dr could be adequately described as a power function of the flow discharges increasing with shear stress, the resistance coefficient and stream power. Shear stress was identified as the most effective hydrodynamic parameter for predicting Dr at upslope (first slope) and midslope (second slope) positions, whereas stream power best predicted Dr at the downslope (third slope) position. Unit stream power was not a reliable predictor of Dr. These findings enhance the mechanistic understanding of soil erosion processes occurring during the spring thaw period and improve the predictive capabilities of soil erosion models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信