L p $L^p$ -bounds in Safarov pseudo-differential calculus on manifolds with bounded geometry

IF 1 2区 数学 Q1 MATHEMATICS
Santiago Gómez Cobos, Michael Ruzhansky
{"title":"L\n p\n \n $L^p$\n -bounds in Safarov pseudo-differential calculus on manifolds with bounded geometry","authors":"Santiago Gómez Cobos,&nbsp;Michael Ruzhansky","doi":"10.1112/jlms.70145","DOIUrl":null,"url":null,"abstract":"<p>Given a smooth complete Riemannian manifold with bounded geometry <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>,</mo>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M,g)$</annotation>\n </semantics></math> and a linear connection <span></span><math>\n <semantics>\n <mo>∇</mo>\n <annotation>$\\nabla$</annotation>\n </semantics></math> on it (not necessarily a metric one), we prove the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^p$</annotation>\n </semantics></math>-boundedness of operators belonging to the global pseudo-differential classes <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>Ψ</mi>\n <mrow>\n <mi>ρ</mi>\n <mo>,</mo>\n <mi>δ</mi>\n </mrow>\n <mi>m</mi>\n </msubsup>\n <mfenced>\n <msup>\n <mi>Ω</mi>\n <mi>κ</mi>\n </msup>\n <mo>,</mo>\n <mo>∇</mo>\n <mo>,</mo>\n <mi>τ</mi>\n </mfenced>\n </mrow>\n <annotation>$\\Psi _{\\rho, \\delta }^m\\left(\\Omega ^\\kappa, \\nabla, \\tau \\right)$</annotation>\n </semantics></math> constructed by Safarov. Our result recovers classical Fefferman's theorem, and extends it to the following two situations: <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>&gt;</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$\\rho &gt;1/3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mo>∇</mo>\n <annotation>$\\nabla$</annotation>\n </semantics></math> symmetric; and <span></span><math>\n <semantics>\n <mo>∇</mo>\n <annotation>$\\nabla$</annotation>\n </semantics></math> flat with any values of <span></span><math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>δ</mi>\n <annotation>$\\delta$</annotation>\n </semantics></math>. Moreover, as a consequence of our main result, we obtain boundedness on Sobolev and Besov spaces and some <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^p$</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>q</mi>\n </msup>\n <annotation>$L^q$</annotation>\n </semantics></math> boundedness. Different examples and applications are presented.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70145","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a smooth complete Riemannian manifold with bounded geometry ( M , g ) $(M,g)$ and a linear connection $\nabla$ on it (not necessarily a metric one), we prove the L p $L^p$ -boundedness of operators belonging to the global pseudo-differential classes Ψ ρ , δ m Ω κ , , τ $\Psi _{\rho, \delta }^m\left(\Omega ^\kappa, \nabla, \tau \right)$ constructed by Safarov. Our result recovers classical Fefferman's theorem, and extends it to the following two situations: ρ > 1 / 3 $\rho >1/3$ and $\nabla$ symmetric; and $\nabla$ flat with any values of ρ $\rho$ and δ $\delta$ . Moreover, as a consequence of our main result, we obtain boundedness on Sobolev and Besov spaces and some L p $L^p$ - L q $L^q$ boundedness. Different examples and applications are presented.

有界几何流形上Safarov伪微分的L p$ L^p$ -界
给定一个光滑完备黎曼流形,几何形状为(M, g) $(M,g)$,其上有一个线性连接∇$\nabla$(不一定是度规连接),我们证明了全局伪微分类Ψ ρ算子的L p $L^p$ -有界性,δ m Ω κ,∇,τ $\Psi _{\rho, \delta }^m\left(\Omega ^\kappa, \nabla, \tau \right)$由Safarov构造。我们的结果恢复了经典Fefferman定理,并将其推广到以下两种情况:ρ &gt;1 / 3 $\rho >1/3$和∇$\nabla$对称;∇$\nabla$与任意值的ρ $\rho$和δ $\delta$是平的。此外,作为我们的主要结果,我们得到了Sobolev和Besov空间上的有界性和一些lp $L^p$ - lq $L^q$有界性。给出了不同的例子和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信