Jesse Whittington, Mark Hebblewhite, Connor Meyer, Barb Johnston, Anne Forshner, Bryan J. Macbeth, Anthony L. Einfeldt, Seth G. Cherry
{"title":"One-stage spatial mark–resight analysis reveals an increasing grizzly bear population with declining density near roads","authors":"Jesse Whittington, Mark Hebblewhite, Connor Meyer, Barb Johnston, Anne Forshner, Bryan J. Macbeth, Anthony L. Einfeldt, Seth G. Cherry","doi":"10.1002/ecs2.70246","DOIUrl":null,"url":null,"abstract":"<p>Wildlife ecologists throughout the world strive to monitor trends in population abundance to help manage wildlife populations and conserve species at risk. Spatial capture–recapture studies are the gold standard for monitoring density, yet they can be difficult to apply because researchers must be able to distinguish all detected individuals. Spatial mark–resight (SMR) models only require a subset of the population to be marked and identifiable. Recent advances in SMR models with radio-collared animals required a two-staged analysis. We developed a one-stage generalized SMR (gSMR) model that used detection histories of marked and unmarked animals in a single analysis. We used simulations to assess the performance of one- and two-stage gSMR models. We then applied the one-stage gSMR with telemetry and remote camera data to estimate grizzly bear (<i>Ursus arctos</i>) abundance from 2012 to 2023 within the Canadian Rocky Mountains. We estimated abundance trends for the population and reproductive females (females with cubs of the year). Simulations suggest that one- and two-stage models performed equally well. One-stage models are more dependable as they use exact likelihoods, whereas two-stage models have shorter computation times for large data sets. Both methods had >95% credible interval coverage and minimal bias. Increasing the number of marked animals increased the accuracy and precision of abundance estimates, and ≥10 marked animals were required to obtain coefficients of variation <20% in most scenarios. The grizzly bear population increased slightly (growth rate λ<sub>mean</sub> = 1.02) to a 2023 density of 10.4 grizzly bears/1000 km<sup>2</sup>. Reproductive female abundance had high interannual variability and increased to 1.0 bears/1000 km<sup>2</sup>. Population density was highest within protected areas, within high-quality habitat and far from paved roads. The density of activity centers declined near paved roads over time. Mechanisms of decline may have included direct mortality and shifting activity centers to avoid human activity. Our study demonstrates the influence of human activity on localized density and the importance of protected areas for carnivore conservation. Finally, our study highlights the widespread utility of remote camera and telemetry-based SMR models for monitoring spatiotemporal trends in abundance.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"16 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70246","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70246","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Wildlife ecologists throughout the world strive to monitor trends in population abundance to help manage wildlife populations and conserve species at risk. Spatial capture–recapture studies are the gold standard for monitoring density, yet they can be difficult to apply because researchers must be able to distinguish all detected individuals. Spatial mark–resight (SMR) models only require a subset of the population to be marked and identifiable. Recent advances in SMR models with radio-collared animals required a two-staged analysis. We developed a one-stage generalized SMR (gSMR) model that used detection histories of marked and unmarked animals in a single analysis. We used simulations to assess the performance of one- and two-stage gSMR models. We then applied the one-stage gSMR with telemetry and remote camera data to estimate grizzly bear (Ursus arctos) abundance from 2012 to 2023 within the Canadian Rocky Mountains. We estimated abundance trends for the population and reproductive females (females with cubs of the year). Simulations suggest that one- and two-stage models performed equally well. One-stage models are more dependable as they use exact likelihoods, whereas two-stage models have shorter computation times for large data sets. Both methods had >95% credible interval coverage and minimal bias. Increasing the number of marked animals increased the accuracy and precision of abundance estimates, and ≥10 marked animals were required to obtain coefficients of variation <20% in most scenarios. The grizzly bear population increased slightly (growth rate λmean = 1.02) to a 2023 density of 10.4 grizzly bears/1000 km2. Reproductive female abundance had high interannual variability and increased to 1.0 bears/1000 km2. Population density was highest within protected areas, within high-quality habitat and far from paved roads. The density of activity centers declined near paved roads over time. Mechanisms of decline may have included direct mortality and shifting activity centers to avoid human activity. Our study demonstrates the influence of human activity on localized density and the importance of protected areas for carnivore conservation. Finally, our study highlights the widespread utility of remote camera and telemetry-based SMR models for monitoring spatiotemporal trends in abundance.
期刊介绍:
The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.